

TRANSIMS:
TRansportation ANalysis SIMulation System

Version: TRANSIMS –3.0

VOLUME FIVE—SOFTWARE: INTERFACE
FUNCTIONS AND DATA STRUCTURES

01 March 2002

LA-UR-00-1755

Copyright © 2002, The Regents of the University of California. This software was produced under a U.S.
Government contract (W-7405-ENG-36) by Los Alamos National Laboratory, which is operated by the
University of California for the U.S. Department of Energy. The U.S. Government is licensed to use,
reproduce, and distribute this software. Neither the Government nor the University makes any warranty,
express or implied, or assumes any liability or responsibility for the use of this software.

TRANSIMS 3.0 Los Alamos National Laboratory

VOLUME FIVE—SOFTWARE: INTERFACE
FUNCTIONS AND DATA STRUCTURES

01 March 2002

The following individuals contributed to this document:

C. L. Barrett*
R. J. Beckman*

K. P. Berkbigler*
K. R. Bisset*
B. W. Bush*
K. Campbell*
S. Eubank*

K. M. Henson*
J. M. Hurford*
D. A. Kubicek*
M. V. Marathe*
P. R. Romero*
J. P. Smith*
L. L. Smith*

P. L. Speckman**
P. E. Stretz*
G. L. Thayer*

E. Van Eeckhout*
M. D. Williams*

* Los Alamos National Laboratory, Los Alamos, NM 87545
** National Institute of Statistical Sciences, Research Triangle Park, NC

TRANSIMS 3.0 Los Alamos National Laboratory

Acknowledgments

This work was supported by the U. S. Department of Transportation (Assistant Secretary
for Transportation Policy, Federal Highway Administration, Federal Transit
Administration), the U.S. Environmental Protection Agency, and the U.S. Department of
Energy as part of the Travel Model Improvement Program.

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five: Contents
1. SYNTHETIC POPULATION ...1

1.1 INTERFACE FUNCTIONS.. 1
1.2 DATA STRUCTURES.. 7

2. ACTIVITIES..9
2.1 INTERFACE FUNCTIONS.. 9
2.2 DATA STRUCTURES.. 21

3. VEHICLE..31
3.1 INTERFACE FUNCTIONS.. 31
3.2 DATA STRUCTURES.. 34
3.3 FILES .. 36

4. VEHICLE PROTOTYPES...37
4.1 INTERFACE FUNCTIONS.. 37
4.2 DATA STRUCTURES.. 39
4.3 FILES .. 40

5. PLAN..41
5.1 INTERFACE FUNCTIONS.. 41
5.2 DATA STRUCTURES.. 47

6. ITERATION DATABASE..49
6.1 INTERFACE FUNCTIONS.. 49
6.2 DATA STRUCTURES.. 59

7. SIMULATION OUTPUT ...61
7.1 INTERFACE FUNCTIONS.. 61
7.2 DATA STRUCTURES.. 75

8. TRANSIT ..84
8.1 INTERFACE FUNCTIONS.. 84
8.2 DATA STRUCTURES.. 87

9. NETWORK ...89
9.1 INTERFACE FUNCTIONS.. 89
9.2 DATA STRUCTURES.. 103

10. INDEXING ...118
10.1 INTERFACE FUNCTIONS.. 118
10.2 DATA STRUCTURES.. 126
10.3 UTILITY PROGRAMS... 129
10.4 FILES .. 132
10.5 USAGE .. 132
10.6 EXAMPLES.. 134

11. CONFIGURATION ...136
11.1 INTERFACE FUNCTIONS.. 136

TRANSIMS 3.0 Los Alamos National Laboratory

11.2 DATA STRUCTURES.. 137
11.3 UTILITY PROGRAMS... 137
11.4 FILES .. 137
11.5 CONFIGURATION FILE KEYS .. 138
11.6 EXAMPLES.. 138

12. LOGGING ...145
12.1 INTERFACE FUNCTIONS.. 145
12.2 FILES .. 146
12.3 EXAMPLES.. 146

VOLUME FIVE: INDEX...147

Volume Five: Tables

Table 1: Vehicle library files. ... 36
Table 2: Vehicle Prototype library files. .. 40
Table 3: Indexing library files. .. 132
Table 4: Indexes used by TRANSIMS components... 132
Table 5: Configuration library files. ... 137
Table 6: Logging library files... 146

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 1

1. SYNTHETIC POPULATION

1.1 Interface Functions

The synthetic population subsystem has C structures and utility functions that are used to
read and write synthetic population data from TRANSIMS synthetic population files.

1.1.1 moreSyntheticHH

Signature int moreSyntheticHH (FILE* const fp)

Description Boolean function used to control iteration through the synthetic
population file.

Argument fp – the FILE* pointer for the synthetic population file that must be

open for reading.

Return Value 1 if not at end of synthetic population file.
0 if EOF has been reached.

1.1.2 getNextSyntheticHH

Signature const SyntheticHHData* getNextSyntheticHH (FILE* const fp)

Description Reads a synthetic household from the synthetic population file. Parses

and converts the values from the file and stores them in the static
SyntheticHHData structure.

Argument fp – the FILE* pointer for the synthetic population file that must be

open for reading.

Return Value The address of a static SyntheticHHData structure containing the data
read from the file.
NULL on error.

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 2

1.1.3 writeSyntheticPopHeader

Signature int writeSyntheticPopHeader (FILE* const fp,
char* hh_header, char* p_header)

Description Writes the header lines in the synthetic population file.

The format of the line is:
 <text>: <demog1> <demog2> … <demogN>
Example:
 Household Demographics: PUMSHH R18UNDR RWRKR89
 RHHINC Person Demographics: AGE RELAT1 SEX WORK89

Argument fp – the FILE* pointer to synthetic population file that must be open for

writing with the file pointer positioned at the beginning of the file.
hh_header – the string containing the household header information.
p_header – the string containing the person header information.

Return Value 1 on success.

0 on error.

1.1.4 CreatePopulationIndex

Signature int CreatePopulationIndex (const char* popFileName)

Description Creates an index to a TRANSIMS synthetic population file sorted by
home location as the primary key, and household ID as the secondary
key.

Argument popFileName – the name of the TRANSIMS synthetic population

file.

Return Value 1 on success.
0 on error.

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 3

1.1.5 getSyntheticHHFromString

Signature const SyntheticHHData* getSyntheticHHFromString (const char* data)

Description Reads and parses the data for a SyntheticHHData record from a data

string. The data string may not be null terminated.

Argument data – the data character string.

Return Value The address of a static SyntheticHHData structure containing the data
read from the string.
NULL on error.

1.1.6 writeSyntheticHH

Signature int writeSyntheticHH (FILE* const fp,
const SyntheticHHData* hh)

Description Writes the given SyntheticHHData into the given synthetic population

file.

Argument fp – the FILE* pointer to the synthetic population file that must be open
for writing.
data – the address of a SyntheticHHData structure containing the
data to be written.

Return Value 1 on success.

0 on error.

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 4

1.1.7 getSyntheticHouseholdFromIndex

Signature const SyntheticHHData* getSyntheticHouseholdFromIndex
(BTree* index, BTreeEntry* key)

Description Get the data for the household from an indexed file.

Argument index – BTree* – a BTree index for the synthetic population data

that is indexed by household ID.
key – BTreeEntry* – a BTreeEntry structure that contains the
household ID as the first key.

Return Value A pointer to a static const SyntheticHHData structure on success.

0 on error.

1.1.8 getSyntheticPopDemographicHeaders

Signature int getSyntheticPopDemographicHeaders (FILE* const fp,
const char** hh_header, const char** person_header)

Description Reads a character array that holds the headers for both the household

demographics and the person demographics. The headers are stored in
the hh_header and person_header character arrays.

Argument fp – the FILE* pointer to the synthetic population. Must be open for

reading.

Outputs hh_header – the address of a character array that holds the headers for
the household demographics.
person_header – the address of a character array that holds the
headers for the person demographics.

Return Value 1 on success.
0 on error.

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 5

1.1.9 CreateDoublePopulationIndex

Signature void CreateDoublePopulationIndex (const char* filename,
int field_pos1, enum act_key_types field_type1,
int field_pos2, enum act_key_types field_type2,
const char*extension1, const char*extension2,
int headerLines)

Description Creates two indexes where the first primary index is field position 1

(*.extension1), the first secondary index is field position 2, the second
primary index is field position 2 (*.extension2), and the second
secondary index is field position 1 from the data file.

Argument filename – the name of the data file to be indexed.

field_pos1 – the position of the field to be used for the first index.
field_type1 – the type of the first field (i.e., kTypeint for an integer
field.)
field_pos2 – the position of the second field to be used for the second
index.
field_type2 – the type of the second field (i.e., kTypeFloat for a
floating-point field.)
extension1 – the extension for the first index (i.e., hh.idx).
extension2 – the extension for the second index (i.e., trv.idx).
headerLines – the number of header lines in a population file.

Return Value None.

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 6

1.1.10 CreatePopIndexFromFile

Signature BTree* CreatePopIndexFromFile (const char* data_file),
const char* index_file, int fieldPos1,
enum act_key_types keyType1, int fieldPos2,
enum act_key_types keyType2)

Description Creates a population index from a data file.

Argument data_file – the file to be indexed.

index_file – the index file.
fieldPos1 – the position of the field to be used for the first index.
keyType1 – the type of the first field (i.e., kTypeInt for an integer
field).
fieldPos2 – the position of the field to be used for the second index.
keyType2 – the position of the second field (i.e., kTypeInt for an
integer field).
extension2 – the extension for the second index (i.e., trv.idx).
headerLines – the number of header lines in a population file.

Return Value None.

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 7

1.2 Data Structures

1.2.1 SyntheticPersonData

This structure is used to hold synthetic person information.

typedef struct synPersonData_s
{
/** TRANSIMS Person ID. **/
INT32 fPersonID;

/** Array of person demographic information. **/
INT32 *fPersonDemographics;

} SyntheticPersonData;

1.2.2 SyntheticHHData

This structure is used to hold synthetic household information.

typedef struct synHHdata_s
{

/** The Census Tract ID of the household. **/
INT32 fTract;

/** The Block Group ID of the household. **/
INT32 fBlockGroupID;

/** The TRANSIMS Household ID. **/
INT32 fHHId;

/** The number of persons in the household. **/
int fNumberPersons;

/** The number of vehicles owned by the household. **/
int fNumberVehicles;

/** The home location of the household – a TRANSIMS activity
 * location ID.
 **/
INT32 fHomeLocation;

/** Number of data items in the household
 * demographics/data array. **/
int fNumberHHDemographics;

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 8

/** Array of household demographic/data information. **/
REAL *fHHDemographics;

/** Number of demographics in the person demographics array. **/
int fNumberPersonDemographics;

/** Array of synthetic person records, one for each member of the
 * household.
 * The number of valid entries in this array is given by
 * the fNumberPersons field.
 */
SyntheticPersonData *fPersons;

} SyntheticHHData;

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 9

2. ACTIVITIES

2.1 Interface Functions

The activity subsystem has C structures and utility functions that are used to read and
write activity data from a TRANSIMS activity file. These functions assume that all of
the activities for a household are grouped sequentially in the TRANSIMS activity file.

2.1.1 moreActivities

Signature int moreActivities (FILE* const fp)

Description Boolean function used to control iteration through the activity file.

Argument fp – the FILE* pointer for the activity file, which must be open for
reading.

Return Value 1 if not at end of activity file.

0 if EOF has been reached.

2.1.2 getNextActivity

Signature const ActivityData* getNextActivity (FILE* const)

Description Reads an activity from the activity file. Parses and converts the string
values from the file and stores them in a static ActivityData
structure. Allocates storage for the fOtherParticipantsList and
fLocations arrays based on data in the file.

Argument fp – the FILE* pointer to the activity, which must be open for

reading.

Return Value The address of an unmodifiable ActivityData structure containing
the activity data from the file.
NULL on error.

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 10

2.1.3 getNextHousehold

Signature const ActivityData* getNextHousehold (FILE* const fp,
int* arraySize)

Description Reads the activities for a household from the activity file.

Constructs an ActivityData structure for each activity in the
household. Parses the activities and stores them in an array of
ActivityData structures.

Argument fp – the FILE* pointer to the activity file, which must be open for

reading.

Return Value An array of unmodifiable ActivityData structures that contains the
activity data for the household. Returns NULL on error. The number of
activities for the household is returned in the arraySize argument.

2.1.4 writeActivity

Signature int writeActivity (FILE* const fp,
const ActivityData * data)

Description Writes the given ActivityData into a line of the given activity file.

Argument fp – the FILE* pointer to the activity file, which must be open for

writing.
data – the address of an ActivityData structure containing the data
to be written.

Return Value 1 on success.

0 on error.

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 11

2.1.5 writeHousehold

Signature int writeHousehold (FILE* fp,
ActivityData* data, int arraySize)

Description Writes the activities for a household into the given file.

Argument fp – the FILE* pointer to the activity file, which must be open for

writing.
data – the address of an ActivityData array containing the
household
activity data to be written.
arraySize – the number of activities in the data array.

Return Value 1 on success.

0 on error.

2.1.6 moreTripTableEntries

Signature int moreTripTableEntries (FILE* const)

Description Boolean function used to control iteration through the trip table file.

Argument fp – the FILE* pointer to the trip table file, which must be open for
reading.

Return Value 1 if not at end of trip table file.

0 if EOF has been reached.

2.1.7 getTripTableDimensions

Signature void getTripTableDimensions (FILE* fp const, int *x,
int *y)

Description Returns the x and y dimensions of the trip table.

Argument fp – the FILE* pointer to the trip table file, which must be open for

reading.
x – the address of an integer that will contain the x dimension of the trip
table.
y – the address of an integer that will contain the y dimension of the trip
table.

Return Value The dimensions of the trip table are returned in the x and y arguments.

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 12

2.1.8 getNextTripTableEntry

Signature const TTripTableEntry* getNextTripTableEntry (FILE* const)

Description Reads the next trip table entry from the trip table file. Stores the

information in a static TTripTableEntry structure and returns the
address of this structure.

Argument fp – the FILE* pointer to the trip table file, which must be open for

reading.

Return Value The address of a static TTripTableEntry structure that contains the
data for the entry.
NULL on error.

2.1.9 moreTimeTableEntries

Signature int moreTimeTableEntries (FILE* const)

Description Boolean function used to control iteration through the time table file.

Argument fp – the FILE* pointer to the time table file, which must be open for
reading.

Return Value 1 if not at end of time table file.

0 if EOF has been reached.

2.1.10 getNextTimeTableEntry

Signature const getNextTimeTableEntry (FILE* const)

Description Reads the next time table entry from the time table file. Stores the
information in a static TTimeTableEntry structure and returns the
address of this structure.

Argument fp – the FILE* pointer to the time table file, which must be open for

reading.

Return Value The address of a static TTimeTableEntry structure that contains the
data for the entry.
NULL on error.

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 13

2.1.11 CreateActivityIndex

Signature void CreateActivityIndex (const char* actFileName)

Description Creates a household and traveler index for a TRANSIMS activity file.
The household index has the household id as the primary key and
produces the file <actFileName>.hh.idx. The traveler index has the
traveler id as the primary key and produces the file
<actFileName>trv.indx.

Argument actFileName – the name of the TRANSIMS activity file.

2.1.12 moreSurveyActivities

Signature int moreSurveyActivities (FILE* fp const)

Description Boolean function used to control iteration through a survey activities
file.

Argument fp – FILE* pointer for the survey activity, which must be open for

reading.

Return Value 1 if not at end of survey activity file
0 if EOF has been reached.

2.1.13 readSurveyActivityHeader

Signature int readSurveyActivityHeader (FILE* fp const)

Description Reads the header line in the survey activity file.

Argument fp – the FILE* pointer for the survey activity, which must be open
for reading.

Return Value 1 on success.

0 on error.

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 14

2.1.14 getSurveyActivity

Signature const TSurveyActivityEntry* getSurveyActivity
(FILE* fp const)

Description Reads a survey activity from the survey activity file and stores the data

in a static TSurveyActivityEntry structure.

Argument fp – FILE* pointer to the survey activity file, which must be open for
reading.

Return Value The address of an unmodifiable TSurveyActivityEntry structure

containing the survey activity data from the file.
NULL on error.

2.1.15 getSurveyWeightFromFile

Signature const TSurveyWeightEntry* getSurveyWeightFromFile
(FILE* const)

Description Reads a survey weight entry from the file and stores the data in a static

TSurveyWeightEntry structure.

Argument fp – the FILE* pointer to the survey weight file, which must be open
for reading.

Return Value The address of an unmodifiable TSurveyWeightEntry structure

containing the survey activity data from the file.
NULL on error.

2.1.16 getSurveyWeightFromData

Signature const TSurveyWeightEntry* getSurveyWeightFromData
(char* const)

Description Get a survey weight entry from the data pointer and store the data in a

static TSurveyWeightEntry structure.

Argument fp – the char* pointer to the data character buffer.

Return Value The address of an unmodifiable TSurveyWeightEntry structure
containing the survey activity data from the file.
NULL on error.

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 15

2.1.17 moreTravelTimes

Signature int moreTravelTimes (FILE* const)

Description Boolean function used to control iteration through a travel times file.

Argument fp – the FILE* pointer for the travel times file, which must be open
for reading.

Return Value 1 if not at end of survey activity file

0 if EOF has been reached.

2.1.18 getTravelTimeEntryFromFile

Signature const TTravelTimeEntry* getTravelTimeEntryFromFile
(FILE* const)

Description Reads a travel time entry from the file and stores the data in a static

TTravelTimeEntry structure.

Argument fp – the FILE* pointer to the travel time file, which must be open for
reading.

Return Value The address of an unmodifiable TTravelTimeEntry structure

containing the travel time data from the file.
NULL on error.

2.1.19 getTravelTimeEntryFromData

Signature const TTravelTimeEntry* getTravelTimeEntryFromData
(char* const)

Description Get a travel time entry from the data pointer and store the data in a static

TTravelTimeEntry structure.

Argument fp – the char* pointer to the data character buffer.

Return Value The address of an unmodifiable TTravelTimeEntry structure
containing the travel time data.
NULL on error.

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 16

2.1.20 writeTravelTimeEntry

Signature int writeTravelTimeEntry (const TTravelTimeEntry* const)

Description Writes a travel time entry to a file.

Argument entry – to a TTravelTimeEntry structure containing the data to be

written to the file.
fp – the FILE* pointer to the file where the entry will be written; must
be open for writing.

Return Value 1 on success.

0 on error.

2.1.21 moreTreeEntries

Signature int moreTreeEntries (FILE* const)

Description Boolean function used to control iteration through a decision tree file.

Argument fp – the FILE* pointer for the decision tree file, which must be open
for reading.

Return Value 1 if not at the end of decision tree file.

0 if EOF has been reached.

2.1.22 getTreeEntryFromFile

Signature const TTreeEntry* getTreeEntryFromFile (FILE* const)

Description Reads a decision tree entry from the file and stores the data in a static
TTreeEntry structure.

Argument fp – the FILE* pointer to the decision tree file, which must be open

for reading.

Return Value The address of an unmodifiable TTreeEntry structure containing the
decision tree data from the file.
NULL on error.

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 17

2.1.23 getTreeEntryFromData

Signature const TTreeEntry getTreeEntryFromData (char* const)

Description Get a decision tree entry from the data pointer and store the data in a
static TTreeEntry structure.

Argument fp – the char* pointer to the data character buffer.

Return Value The address of an unmodifiable TTreeEntry structure containing the

decision tree data.
NULL on error.

2.1.24 moreZoneEntries

Signature int moreZoneEntries (FILE* const)

Description Boolean function used to control iteration through a zone information
file.

Argument fp – the FILE* pointer for the zone information file, which must be

open for reading.

Return Value 1 if not at end of zone information file.
0 if EOF has been reached.

2.1.25 getZoneHeaderFromFile

Signature const TZoneHeader* getZoneHeaderFromFile (FILE* const)

Description Reads the zone header from the file and stores the data in a static

TZoneHeader structure.

Argument fp – the FILE* pointer to the zone information file, which must be
open for reading.

Return Value The address of an unmodifiable TZoneHeader structure containing the

header data from the file.
NULL on error.

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 18

2.1.26 getZoneEntryFromFile

Signature const TZoneEntry* getZoneEntryFromFile
FILE* const, int)

Description Reads a zone entry from the file and stores the data in a static

TZoneEntry structure.

Argument fp – the FILE* pointer to the zone information file, which must be
open for reading.

Return Value The address of an unmodifiable TZoneEntry structure containing the

zone data from the file.
NULL on error.

2.1.27 getZoneEntryFromData

Signature const TZoneEntry* getZoneEntryFromData
(char* const, int)

Description Get a zone entry from the data pointer and store the data in a static

TZoneEntry structure.

Argument fp – the char* pointer to the data character buffer.

Return Value The address of an unmodifiable TZoneEntry structure containing the
zone data.
NULL on error.

2.1.28 moreModeWeightEntries

Signature int moreModeWeightEntries (FILE* const)

Description Boolean function used to control iteration through a mode weight file.

Argument fp – the FILE* pointer for the mode weight file, which must be open
for reading.

Return Value 1 if not at end of mode weight file.

0 if EOF has been reached.

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 19

2.1.29 getModeWeightEntryFromData

Signature const TModeWeightEntry* getModeWeightEntryFromData
(char* const)

Description Get a mode coefficient entry from the data pointer and store the data in a

static TModeWeightEntry structure.

Argument fp – the char* pointer to the data character buffer.

Return Value The address of an unmodifiable TModeWeightEntry structure
containing the zone data.
NULL on error.

2.1.30 getModeWeightEntryFromFile

Signature const TModeWeightEntry* getModeWeightEntryFromFile
(FILE* const)

Description Reads a mode weight entry from the file and stores the data in a static

TModeWeightEntry structure.

Argument fp – the FILE* pointer to the mode weight file, which must be open
for reading.

Return Value The address of an unmodifiable TModeWeightEntry structure

containing the mode weight data from the file.
NULL on error.

2.1.31 moreModeEntries

Signature int moreModeEntries (FILE* const)

Description Boolean function used to control iteration through a TRANSIMS mode
file.

Argument fp – the FILE* pointer for the mode file, which must be open for

reading.

Return Value 1 if not at end of mode.
0 if EOF has been reached.

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 20

2.1.32 getModeEntryFromFile

Signature const TModeEntry* getModeEntryFromFile (FILE* const)

Description Reads a mode entry from the file and stores the data in a static
TModeEntry structure.

Argument fp – the FILE* pointer to the mode file, which must be open for

reading.

Return Value The address of an unmodifiable TModeEntry structure containing the
mode data from the file.
NULL on error.

2.1.33 CreateFeedbackIndex

Signature void CreateFeedbackIndex (const char* FileName

Description Creates an index to the feedback command file with household ID as the
primary key and traveler ID as the secondary key.

Argument FileName – name of the feedback command file to be indexed.

Return Value None.

2.1.34 CreateTravelTimesIndex

Signature void CreateTravelTimesIndex (const char* FileName)

Description Creates an index to the travel times file with zone 1 as the primary index
and zone 2 as the secondary index.

Argument FileName – name of the travel times file to be indexed.

Return Value None.

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 21

2.2 Data Structures

2.2.1 ActivityTimeSpec

This structure is used for activity time specifications.

typedef struct act_time_spec_s
{
/** The lower bound of the time interval. **/
REAL fLowerBound;

/** The upper bound of the time interval. **/
REAL fUpperBound;

/** The A parameter for the beta distribution. **/
REAL fAParameter;

/** The B parameter for the beta distribution. **/
REAL fBParameter;

} ActivityTimeSpec;

Each activity has a start time, end time, and duration range. The preferred time for each
of these is given in terms of the two parameters of a beta distribution, f(t)=C(t-L)a-1(U-t)b-

1, where C is a constant, L is the lower bound of the time, U is the upper bound and a and
b are the parameters that specify the distribution. The mean of the distribution is a/(a+b);
a=1 and b=1 give a uniform distribution between L and U. Larger values for a and b
result in a more peaked distribution. If the a and/or b parameter is equal to -1.0, an
average of the lower and upper bound will be used.

The reference time is taken as 0.00 (midnight of the first day). All times are decimal
numbers that denote the number of hours from 0.00. Note that each time should be given
to a minimum of two decimal places to capture minutes and four decimal places if
seconds are necessary.

2.2.2 ActivityData

This structure is used to store the data for a single activity as defined by one line in the
activity file.

typedef struct actdata_s
{

/** The household ID. **/
INT32 fHouseholdId;

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 22

/** The person ID. **/
INT32 fPersonId;

/** The activity ID — must be unique within the household. **/
INT32 fActivityId;

/** The activity type. An integer value representing
 * the activity type such as home, work, school, shopping,
 * other, wait at transit stop,
**/
INT32 fType;

/** The priority ranking of the activity in the range 0 - 9,
 * where 0 is the lowest priority and 9 means the activity
 * must be done.
**/
INT32 fPriority;

/** The integer value defining transportation mode used to arrive
 * at the activity.
**/
INT32 fModePreference;

/** The ID of the vehicle to be used when the mode preference is
 * private auto, either as a driver or passenger. Set to –1 for
 * all other mode preferences.
**/
INT32 fVehicleId;

/** The number of locations where the activity can take place.
 * This field is used to provide information about the
 * fActivityGroupIndex and fPossibleLocationsList fields.
 * A value of 1 or greater indicates that the
 * fPossibleLocationsList contains a list of locations for the
 * activity. A value of -1 indicates that the
 * fActivityGroupIndex field contains an index number into a
 * group of activities.
**/
INT32 fPossibleLocations;

/** The number of other people that will participate in the
 * activity and use the same transportation. Value is 0 if the
 * person is traveling alone to the activity. If the value is >
 * 0, a list of the IDs of the other participants is entered in
 * the fOtherParticipantsList array.
**/
INT32 fOtherParticipants;

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 23

/** The number of the activity for this individual. Every
 * activity for an individual has a number. Groups of activities
 * that must be done together have the same number.
**/
INT32 fActivityGroupNumber;

/** An array of personIds for other participants in the activity
 * that will use the same transportation. There are no valid
 * entries in this array if the value of fOtherParticipants
 * is 0.
**/
INT32 *fOtherParticipantsList;

/** The index into a group of activities (integer).
 * Used only when the value of fPossibleLocations is -1.
**/
INT32 fActivityGroupIndex;

/** An array of possible locations (integer IDs) where
 * the activity will occur. Used when the value of
 * fPossibleLocations is 1 or greater.
**/
INT32 *fLocations;

/** The preferred start time for the activity. The
 * ActivityTimeSpec structure contains the specification
 * parameters for a beta distribution of the preferred time.
**/
ActivityTimeSpec fStart;

/** The preferred end time for the activity. The
 * ActivityTimeSpec structure contains the specification
 * parameters for a beta distribution of the preferred time.
**/
ActivityTimeSpec fEnd;

/** The preferred duration for the activity. The ActivityTimeSpec
 * structure contains the specification parameters for a beta
 * distribution of the preferred time.
**/
ActivityTimeSpec fDuration;

} ActivityData;

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 24

2.2.3 TTripTableEntry
This structure is used to store a two-dimensional table containing the number of trips between
zones.

typedef struct triptableentry_s
{

/** The number of the X zone. **/
int fZoneX;

/** The number of the Y zone. **/
int fZoneY;

/** The number of trips between fZoneX and fZoneY **/
int fNumberTrips;

} TTripTableEntry;

2.2.4 TTimeTableEntry
This structure is used to store entries from a trip time probability table that contains a range of
times over a 24-hour period. Each range has an associated trip probability.

typedef struct timetableentry_s
{

/** The lower bound of the time range. **/
float fRangeL;

/** The upper bound of the time range. **/
float fRangeU;

/** The probability associated with the time range. **/
float fProb;

} TTimeTableEntry;

2.2.5 TSurveyActivityEntry

This structure stores the data for a survey activity as defined by one line in the survey
activity file.

/** A survey activity entry **/

typedef struct TSurveyActivityEntry_s
{

/** The survey household number. **/
INT32 fHHNumber;

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 25

/** The person number (unique within the household) **/
INT32 fPersonNumber;

/** The activity number for each person, 0 - n.
 * 0 = initial at home activity.
**/
INT32 fActivityNumber;

/** The activity type, 0 = at home, 1 = work, 22 = *
 * serve_passengers. Others may vary.
**/
INT32 fType;

/** 1 if activity is at home location, 0 if out of home. **/
 INT32 fAtHome;

/** Value = 1 if person was already at the location,
 * value = 2 if not.
**/
INT32 fWereYouThere;

/** The mode for arriving at an activity. -1 if mode from the
 * survey was missing.
**/
INT32 fMode;

/** Value = 1 if person was driver, 2 if person was a passenger,
 * -1 otherwise.
**/
INT32 fDriver;

/** The activity start time in minutes after midnight
 * (0 - 2400).
**/
INT32 fStartTime;

/** The activity end time in minutes after midnight
 * (0 - 2400).
**/
INT32 fEndTime;

/** Number of persons in vehicle **/
INT32 fNumberInVehicle;

/** X coordinate of survey activity **/
REAL fXCoord;

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 26

/** Y coordinate of survey activity **/
REAL fYCoord;

} TSurveyActivityEntry;

2.2.6 TTravelTimeEntry

This structure stores data for one zone-to-zone travel time entry as contained in one line
of the travel times file.

/** An activity generator travel time entry.
 * Travel time values are from zone to zone
 * by mode and time of day.
**/

typedef struct TTravelTimeEntry_s
{

/** The zone numbers **/
INT32 fZone1;
INT32 fZone2;

/** The mode **/
INT32 fMode;

/** The start time **/
REAL fStartTime;

/**The end time **/
REAL fEndTime;

/** The travel time **/
REAL fValue;

/** The time the entry was updated. **/
INT32 fLastUpdate;

} TTravelTimeEntry;

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 27

2.2.7 TFeedbackEntry
This structure is used to store the data from an Activity Generator feedback command.

/** An Activity Generator feedback file entry.
 * An entry contains the household id,
 * the activity id, the command, and
 * optional arguments to the command.
 * If the command is change time of the activity,
 * the new start, end, start alpha and beta,
 * and end alpha and beta are specified as
 * arguments.
**/

typedef struct TFeedbackEntry_s
{

/** The household ID **/
INT32 fHouseholdId;

/** The activity ID **/
INT32 fActivityId;

/** The feedback command **/
char fCommand[MAX_FEEDBACK_COMMAND_LENGTH];

/** The number of valid arguments in the fArguments array. **/
int fValidArgs;

/** The optional arguments to the command. **/
REAL fArguments[MAX_NUMBER_FEEDBACK_ARGUMENTS];

} TFeedbackEntry;

2.2.8 TTreeEntry

This structure is used to store the data for a node in the Activity Generator regression
tree.

/** An entry defining a node in the Activity Generator decision
 * tree. Each node contains a demographic, a split value for the
 * demographic, and a node number that specified it's
 * relationship in the tree.
**/
typedef struct TTreeEntry_s

{

/** The demographic number. **/
INT32 fDemographic;

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 28

/** The split value for the demographic. **/
REAL fSplitValue;

/** The node number. **/
INT32 fNodeNumber;

} TTreeEntry;

2.2.9 TZoneHeader

This structure is used to store the header information from the Activity Generator zone
information file.

/** Stores the column headings from the header line
 * in the zone information data.
 * The number of column headings is variable.
**/

typedef struct TZoneHeader_s
{

/** The number of columns in the line. **/
int fNumberHeaders;

/** The array of character strings containing the column
 * headings for the attractor values in the zone.
 * Each column header can have up to MAX_HEADER_LENGTH
 * characters. This is a dynamically allocated
 * two-dimensional array fAttractorHeaders[][]
**/
char **fAttractorHeaders;

} TZoneHeader;

2.2.10 TZoneEntry

This structure is used to store data for a zone entry from the Activity Generator zone
information file.

typedef struct TZoneEntry_s
{
/** The zone number. **/
INT32 fNumber;

/** The easting geocoordinate for the zone. **/
 REAL fEasting;

/** The northing geocoordinate for the zone. **/
REAL fNorthing;

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 29

/** The number of attractors by activity type for the zone.
 * The work attractor is required, so the number must
 * be 1 or greater. These types MUST correspond to
 * the activity type definitions in the Activity Generator.
**/
INT32 fNumberAttractors;

/** The array of floating-point values for the attractors by
 * activity type in the zone. The first value in the
 * array is for the work attractor, which is required.
**/
REAL *fAttractors;

} TZoneEntry;

2.2.11 TModeWeightEntry
This structure is used to store a mode weight entry from the Activity Generator mode coefficient
file.

/** A mode coefficient entry for the NISS activity generator.
 * Each mode can be assigned a relative weight.
 */

typedef struct TModeWeightEntry_s
{

/** The coefficient for the mode. **/
REAL fWeight;

/** The activity type **/
INT32 fActivityType;

/** The mode **/
INT32 fMode;

} TModeWeightEntry;

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 30

2.2.12 TModeEntry

This structure is used to store an entry from a TRANSIMS mode map file.

/** A mode string and number entry.
 * Each entry has a mode string, e.g. "wcw"
 * and an integer value associated with the mode.
 */

typedef struct TModeEntry_s
{
/** The mode string **/
char fModeString[MAX_MODE_STRING_LENGTH];

/** The number associated with the mode string. **/
int fMode;

} TModeEntry;

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 31

3. VEHICLE

3.1 Interface Functions

The vehicle subsystem has C structures and utility functions that are used to read and
write data from a TRANSIMS vehicle file.

The function getNextVehicle () reads vehicle data from a vehicle file in ASCII
format. The function stores the information in an unmodifiable data structure
(VehicleData), and returns a pointer to the structure. Since the VehicleData structure
cannot be modified by the calling program, the data should be copied if it needs to be
changed.

The function writeVehicle () takes a VehicleData structure as an argument
containing the information to be written. The getNextVehicle () function combined
with the moreVehicles () function provides a mechanism for iterating through the
vehicle file reading the vehicle data.

3.1.1 moreVehicles

Signature int moreVehicles (FILE* const fp)

Description Boolean function used to control iteration through the vehicle file.

Argument fp – the FILE* pointer for the vehicle file, which must be open for
reading.

Return Value 1 if not at end of vehicle file.

0 if EOF has been reached.

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 32

3.1.2 getNextVehicle

Signature const VehicleData* getNextVehicle (FILE* const fp)

Description Reads a line of vehicle data from the vehicle file. Parses and converts
the string values from the file and stores them in the static
VehicleData structure fVehicle.

Argument fp – the FILE* pointer for the vehicle file, which must be open for

reading.

Return Value The address of a static VehicleData structure containing the vehicle
data read from the file.
NULL on error.

3.1.3 writeVehicle

Signature int writeVehicle (FILE* const fp,
const VehicleData* data)

Description Writes the given VehicleData into a line of the given vehicle file.

Argument fp – the FILE* pointer for the vehicle file, which must be open for

reading.
data – the address of a VehicleData structure containing the data to
be written.

Return Value 1 on success.
0 on error.

3.1.4 VehDataReadHeader

Signature int VehDataReadHeader (FILE* fp,
TVehDataHeader* header)

Description Reads the header line from the vehicle file.

Argument fp – the FILE* pointer for the vehicle file, which must be opened for

reading.
header – TVehDataHeader* to a header structure.

Return Value 1 if header read successfully.

0 if error occurs.

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 33

3.1.5 VehDataWriteHeader

Signature int VehDataWriteHeader (FILE* fp,
TVehDataHeader* header)

Description Writes a header line to the vehicle file.

Argument fp – the FILE* pointer for the vehicle file, which must be opened for

writing.
header – TVehDataHeader* to a header structure.

Return Value 1 if header written successfully.

0 if error occurs.

3.1.6 VehDataWriteDefaultHeader

Signature int VehDataWriteDefaultHeader (FILE* fp)

Description Writes a default header line to the vehicle file.

Argument fp – the FILE* pointer for the vehicle file, which must be opened for
writing.

Return Value 1 if header written successfully.

0 if error occurs.

3.1.7 VehDataSkipHeader

Signature int VehDataSkipHeader (FILE* fp)

Description Skip a header from a vehicle file.

Argument fp – the FILE* pointer for the vehicle file, which must be opened for
reading.

Return Value 1 if header skipped successfully.

0 if error occurs.

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 34

3.2 Data Structures

3.2.1 TVehDataHeader

This structure is used to store a vehicle file header.

typedef struct
{

/** The field names. **/
INT8 fFields[512]

} TVehDataHeader;

3.2.2 VehicleData

This structure is used to store the data for a single vehicle as defined by one line in the
vehicle file.

typedef struct vehdata_s
{
/** The household ID. **/
INT32 fHouseholdId;

/** The vehicle ID. **/
INT32 fVehicleId;

/** The ID starting location of the vehicle. –1 is used if
 * the starting location is unknown or to indicate that the
 * Route Planner should choose the starting location.
**/
INT32 fStartingLocation;

/** The TRANSIMS Network vehicle type.
 * Must be one of the following values:
 * 1 = Auto
 * 2 = Truck
 * 4 = Taxi
 * 5 = Bus
 * 6 = Trolley
 * 7 = StreetCar
 * 8 = LightRail
 * 9 = RapidRail
 * 10 = RegionalRail
 * -1 = Unknown
**/
INT32 fVehicleType;

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 35

/** The user-defined emissions vehicle subtype. **/
INT32 fEmissionsSubtype;

/** The number of values in the fIdentifiers array. **/
INT32 fNumberIdentifiers;

/** The optional array of user-defined integer values.
 * The number of entries in the array is variable
 * but must be the same for every line of the file.
 * If no user-defined values are present in the file,
 * fIdentifiers will be NULL.
**/
INT32 *fIdentifiers;

} VehicleData;

3.2.3 TVehDataHeader

This structure is used to store the data for a vehicle location file.

typedef struct
{

/* The field names. */
INT8 fFields[512];

} TVehDataHeader;

/** Reads a header from a vehicle location file.
 * Returns nonzero if the header was
 * successfully read, or zero if not.
**/
extern int VehDataReadHeader (FILE* file, TVehDataHeader*
header);

/** Writes a header to a vehicle location file.
 * Returns nonzero if the header was
 * successfully written, or zero if not.
**/
extern int VehDataWriteHeader (FILE* file,
const TVehDataHeader* header);

/** Writes a default header to a vehicle location file.
 * Returns nonzero if the header was successfully written,
 * or zero if not.
**/
extern int VehDataWriteDefaultHeader (FILE* file);

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 36

/** Skips a header from a vehicle location file.
 * Returns nonzero if the header was successfully skipped,
 * or zero if not. **/
extern int VehDataSkipHeader (FILE* file);
}

3.3 Files

Table 1: Vehicle library files.

Type File Name Description
Binary Files libTIO.a The TRANSIMS Interfaces library.
Source Files vehio.c The source file for vehicle file functions.
 vehio.h The header file for vehicle file functions.

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 37

4. VEHICLE PROTOTYPES
This section describes the C structures and utility functions that are used to read and write
TRANSIMS vehicle prototype files. Vehicle prototype files are used to describe
parameters for vehicle types and subtypes such as length and capacity of the vehicle, as
well as maximum speed and acceleration.

4.1 Interface Functions

4.1.1 VehReadHeader

Signature int VehReadHeader (FILE* file, TVehHeader* header)

Description Reads a header from a vehicle prototype file.

Argument file – the pointer to the FILE stream object.
header – the pointer to a vehicle prototype header structure.

Return Value Nonzero if the header was successfully read, or zero if not.

4.1.2 VehWriteHeader

Signature int VehWriteHeader (FILE* file,
const TVehHeader* header)

Description Writes a header from a vehicle prototype file.

Argument file – the pointer to the FILE stream object.

header – pointer to a vehicle prototype header structure.

Return Value Nonzero if the header was successfully written, or zero if not.

4.1.3 VehWriteDefaultHeader

Signature int VehWriteDefaultHeader (FILE* file)

Description Writes a default header from a vehicle prototype file.

Argument file – the pointer to the FILE stream object.

Return Value Nonzero if the header was successfully written, or zero if not.

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 38

4.1.4 VehSkipHeader

Signature int VehSkipHeader (FILE* file)

Description Skips a header from a vehicle prototype file.

Argument file – the pointer to the FILE stream object.

Return Value Nonzero if the header was successfully shipped, or zero if not.

4.1.5 VehReadPrototype

Signature int VehReadPrototype (FILE* file,
TVehPrototypeData* record)

Description Reads a record from a vehicle prototype file.

Argument file – the pointer to the FILE stream object.

record – the pointer to a vehicle prototype record structure.

Return Value Nonzero if the record was successfully read, or zero if not.

4.1.6 VehWritePrototype

Signature int VehWritePrototype (FILE* file,
const TVehPrototypeData* record)

Description Writes a record to a vehicle prototype file.

Argument file – the pointer to the FILE stream object.

record – the pointer to a vehicle prototype record structure.

Return Value Nonzero if the record was successfully written, or zero if not.

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 39

4.2 Data Structures

4.2.1 TVehHeader

This structure is used to store the vehicle prototype as defined by one line in the vehicle
file.

typedef struct
{

/** The field names. **/
INT8 fFields[512]

} TVehHeader;

4.2.2 TVehPrototypeData

This structure is used for vehicle prototype file records.

typedef struct
{

/** The vehicle type. **/
INT32 fVehicleType;

/** The vehicle subtype, used for emissions. **/
INT32 fEmissionsSubtype;

/** The maximum vehicle speed (meters/second). **/
REAL fMaximumVelocity;

/** The maximum vehicle acceleration (meters/second/seconds). **/
REAL fMaximumAcceleration;

/** The vehicle length (meters). **/
REAL fLength;

/** The vehicle capacity (driver + number of possible
 * passengers).
 **/
INT32 fCapacity;

}TVehPrototypeData;

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 40

4.3 Files

Table 2: Vehicle Prototype library files.

Type File Name Description
Binary Files libTIO.a The TRANSIMS Interfaces library.
Source Files vehprotoio.c The source file for vehicle prototype file functions.
 vehprotoio.h The header file for vehicle prototype file functions.

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 41

5. PLAN
The Route Planner and Traffic Microsimulator have C structures and utility functions that
are used to read and write TRANSIMS plan files.

5.1 Interface Functions

The function getNextLegRecord() reads a single leg of a traveler’s plan from a plan
file. The function stores the information in a static data structure (LegData) and returns a
pointer to a structure data. The LegData structure cannot be modified by the calling
program. The data should be copied if it needs to be changed. The function writeLeg
() is used to create a TRANSIMS plan file.

5.1.1 moreLegs

Signature int moreLegs (FILE* const fp)

Description The Boolean function used to control iteration through the plan file.

Argument fp – the FILE* pointer for the plan file, which must be open for
reading.

Return Value 1 if not at end of plan file.

0 if EOF has been reached.

5.1.2 getNextLeg

Signature const LegData* getNextLeg (FILE* const fp)

Description Reads a single leg of a traveler’s plan from the plan file. Parses and
converts the non-mode-dependent values from the file and stores them
in the static LegData structure.

Argument fp – the FILE* pointer for the plan file, which must be open for

reading.

Return Value The address of the static LegData structure containing the data read
from the file.
NULL on error.

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 42

5.1.3 writeLeg

Signature int writeLeg (FILE* const fp, const LegData* leg)

Description Writes the given LegData into the given plan file.

Argument fp – the FILE* pointer to the plan file, which must be open for
reading.

Return Value 1 on success.

0 on error.

5.1.4 readLegRecordFromString

Signature int readLegRecordFromString (char* buf)

Description Reads and parses the data for a LegData record from a data string. The
data string need not be null terminated.

Argument buf – the data character string.

Return Value 1 always.

5.1.5 readLegRecord

Signature int readLegRecord (FILE* const fp)

Description Reads a single leg of a traveler’s plan from the plan file and stores it in a
static character buffer. Note that it does not parse the record, nor does it
update the contents of the static LegData structure. Selective parsing of
records provides a fast means of retrieving only a few pieces of data
from each leg of a plan file.

Argument fp – the FILE* pointer for the plan file, which must be open for

reading.

Return Value 1 on success.
0 on error.

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 43

5.1.6 writeLegRecord

Signature int writeLegRecord (FILE* const fp)

Description Writes the current string stored in the static character buffer into the
given plan file.

Argument fp – the FILE* pointer to the plan file, which must be open for

writing.

Return Value Number of characters written.

5.1.7 parseBufferedLegRecord

Signature int parseBufferedLegRecord (void)

Description Parses all of the non-mode-dependent fields of the traveler’s leg data
stored in the static character buffer. Fills in the fields of the static
LegData structure.

Return Value 1 always.

0 on failure.

5.1.8 getCurrentLeg

Signature const LegData* getCurrentLeg (void)

Description Retrieve the information currently stored in the static LegData
structure.

Return Value The address of the static LegData structure maintained by

parseBufferedLegRecord, readLegRecordFromString, and
readLegRecord.

5.1.9 getLegTravelerId

Signature int getLegTravelerId(void)

Description Parses the traveler ID field from the static character buffer and stores the
result in the traveler ID field of the static LegData structure.

Return Value Traveler ID from the current leg.

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 44

5.1.10 getLegDepartTime

Signature int getLegDepartTime (void)

Description Parses the estimated departure time field from the static character buffer
and stores the result in the estimated departure time field of the static
LegData structure.

Return Value Estimated departure time from the current leg.

5.1.11 getLegStartAccessoryId

Signature int getLegStartAccessoryId (void)

Description Parses the starting accessory ID field from the static character buffer and
stores the result in the starting accessory ID field of the static LegData
structure.

Return Value Starting accessory ID from the current leg.

5.1.12 getLegStartAccessoryType

Signature int getLegStartAccessoryType (void)

Description Parses the starting accessory type field from the static character buffer
and stores the result in the starting accessory type field of the static
LegData structure.

Return Value Starting accessory type from the current leg.

5.1.13 getLegTripId

Signature int getLegTripId ()

Description Parses the trip ID field from the static character buffer and stores the
result in the trip ID field of the static LegData structure.

Return Value Trip ID from the current leg.

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 45

5.1.14 getLegLegId

Signature int getLegLegId (void)

Description Parses the leg ID from the static character buffer and stores the result in
the leg ID field of the static LegData structure.

Return Value Leg ID from the current leg

5.1.15 getLegMode

Signature int getLegMode (void)

Description Parses the mode field from the static character buffer and stores the
result in the mode field of the static LegData structure.

Return Value Mode from the current leg.

5.1.16 DefragmentPlanFiles

Signature void DefragmentPlanFiles(char* filename,
BTree* index)

Description Creates one new plan file from an index that specifies multiple plan

files.

Argument filename – the pointer to a character string containing the name of the
new plan file.
index – the pointer to the existing index.

Return Value None.

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 46

5.1.17 ReverseIndex

Signature void ReverseIndex (BTree* new, BTree* old)

Description Create a new index from an existing index by interchanging the primary
and secondary keys.

Argument new – the pointer to the new index, should have been prepared with

BTree_Create prior to running ReverseIndex.
old – the pointer to the existing index.

Return Value None.

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 47

5.2 Data Structures

5.2.1 LegData

This structure is used to hold one leg of a traveler’s plan.

typedef struct plandata_s
{

/** The fixed part of the data structure. **/

/** The TRANSIMS traveler ID **/
UINT32 fTravId;

/** A user defined field. **/
INT32 fUser;

/** The trip sequence number. **/
INT32 fTrip;

/** The leg sequence number. **/
INT32 fLeg;

/** The (estimated) departure time in seconds past midnight. **/
INT32 fActivationTime;

/** The ID of the accessory at which this leg starts. **/
INT32 fStartAcc;

/** The type of the accessory at which this leg starts. **/
INT32 fStartAccType;

/** The ID of the accessory at which this leg ends. **/
INT32 fEndAcc;

/** The type of the accessory at which this leg ends. **/
INT32 fEndAccType;

/** The (estimated) duration of this leg in seconds. **/
INT32 fDuration;

/** The (estimated) ending time of this leg in seconds past
 * midnight.
**/
INT32 fStopTime;

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 48

/** A flag telling the Traffic Microsimulator whether to use the
 * maximum or minimum of fStopTime and (fDuration + simulation
 * time at arrival) for determining the ending time of a leg
 * using a non-simulated mode.
**/
INT32 fMaxTime;

/** The dollar cost of this leg. **/
INT32 fCost;

/** The cost of this leg under a user-defined generalized cost
 * function. **/
INT32 fGCF;

/** Is the traveler driving a vehicle on this leg? **/
INT32 fDriverFlag;

/** The travel mode for this leg. **/
INT32 fMode;

/** The variable (mode dependent) part of the data structure. **/
char * fData;

} LegData;

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 49

6. ITERATION DATABASE

6.1 Interface Functions

In any function that takes a string representing a record as an argument, an empty field is
represented by two consecutive commas (i.e., “,,”). In any function that takes an array of
strings representing a record as an argument, a blank field can be represented by either an
empty string or a NULL pointer to a string. The last pointer in the array should be NULL.

The String functions return a null-terminated string that is a copy of the record/field
requested. The contents of the string are modifiable, and the string needs to be freed after
use.

If a particular field is empty, it is assumed that the value for that field has not changed
since the last iteration.

The Data functions return a pointer into the mmapped file in which the record/field
resides. Changing data through this pointer will change the actual iteration file where the
data resides. This pointer should not be freed.

6.1.1 ITDB_Create

Signature ITDB* ITDB_Create (char* base_filename, char* fields)

Description Creates a new iteration database.

Argument base_filename – the filename to create files with; filename.idx for
the index and filename.#.it for each iteration, where # is the iteration
number.
fields – the field names as a comma-separated string.

Return Value A pointer to a new iteration database on iteration 0.

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 50

6.1.2 ITDB_CreateV

Signature ITDB* ITDB_CreateV (char* base_filename,
char* fields[], int key)

Description Creates a new iteration database with the given filename.

Argument base_filename – the filename to create files with; filename.idx for

the index and filename.#.it for each iteration, where # is the iteration
number.
fields – the field names as an array of strings.
key – the value of the key for which to return records.

Return Value A pointer to a new iteration database on iteration 0.

6.1.3 ITDB_Open

Signature ITDB* ITDB_Open (char* base_filename)

Description Opens an existing ITDB.

Argument base_filename – the filename of the ITDB.

Return Value A pointer to an existing iteration database on the same iteration it had
when closed.

6.1.4 ITDB_Close

Signature void ITDB_Close (ITDB* db)

Description Closes an ITDB and free all resources. Upon return, db is no longer a
valid pointer.

Argument db – the database to close.

Return Value None.

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 51

6.1.5 ITDB_CurrentIteration

Signature int ITDB_CurrentIteration (ITDB* db)

Description Returns the current iteration number.

Argument db – the itdb on which to operate.

Return Value Current iteration number.

6.1.6 ITDB_NewIteration

Signature int ITDB_NewIteration (ITDB* db, char* comment)

Description Starts on a new iteration.

Argument db – the itdb on which to operate.
comment – a comment to be stored as the first line of the new iteration
file.

Return Value New iteration number.

6.1.7 ITDB_Add

Signature void ITDB_Add (ITDB* db, int key, char* data)

Description Adds data to key for the current iteration. If data exists for the key
given, the new data is added to the index following the old data.

Argument db – the itdb on which to operate.

key – the value of the primary key.
data – a comma-separated string of field values.

Return Value None.

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 52

6.1.8 ITDB_AddV

Signature void ITDB_AddV (ITDB*, int key, char* data[])

Description Adds data to key for the current iteration. If data already exists for the
key given, the new data is added to the index following the old data.

Argument db – the itdb on which to operate.

key – the value of the primary key.
data – an array of field values.

Return Value None.

6.1.9 ITDB_GetCurrentString

Signature char* ITDB_GetCurrentString (ITDB* db, int key)

Description Gets data for key from the current iteration.

Argument db – the itdb in which to operate.
key – the value of key for which to retrieve information.

Return Value Null-terminated copy of the data. The caller is responsible for deleting

this string.

6.1.10 GetCurrentData

Signature char* ITDB_GetCurrentData (ITDB* db, int key)

Description Gets data for key from the current iteration.

Argument db – the itdb on which to operate.
key – the value of the key for which to retrieve data.

Return Value A pointer into the mmapped field. Changes to the string will change the

actual file. This pointer should not be freed.

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 53

6.1.11 ITDB_GetString

Signature char* ITDB_GetString (ITDB* db, int it, int key)

Description Gets data for key from the given iteration.

Argument db – the itdb on which to operate.
it – the iteration from which to retrieve data.
key – the value of the key for which to retrieve information.

Return Value Null-terminated copy of the data. The caller is responsible for deleting

this string.

6.1.12 ITDB_GetData

Signature char* ITDB_GetData ITDB* db, int it, int key)

Description Gets data for key from the given iteration.

Argument db – the itdb on which to operate.
it – the iteration from which to retrieve data.
key – the value of the key for which to retrieve information.

Return Value A pointer into the mmapped file. Changes to the string will change the

actual file. This pointer should not be freed.

6.1.13 ITDB_GetTotalString

Signature char* ITDB_GetTotalString (ITDB* db, int key)

Description Returns the latest data over all iterations for key. Searches back through
the iterations for the last non-blank entry for each field.

Argument db – the itdb on which to operate.

key – the value of the key for which to retrieve information.

Return Value Null-terminated copy of the data. The caller is responsible for deleting
this string.

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 54

6.1.14 ITDB_GetCurrentField

Signature char* ITDB_GetCurrentField (ITDB* db, int key, int field)

Description Returns the specific field for the current iteration for key.

Argument db – the itdb on which to operate.

key – the value of the key for which to retrieve information.
field – the field to retrieve.

Return Value String containing specified field.

6.1.15 ITDB_GetField

Signature char* ITDB_GetField (ITDB* db, int key,
int field, int it)

Description Returns the specified field for the specified iteration for key.

Argument db – the itdb on which to operate.

key – the value of the key for which to retrieve information.
field – the field to retrieve.
it – the iteration from which to retrieve information

Return Value String containing specified field.

6.1.16 ITDB_GetFirstField

Signature char* ITDB_GetFirstField (ITDB* db, int key,
int field, int it)

Description Returns the specified field for the earliest iteration that has data.

Argument db – the itdb on which to operate.

key – the value of the key for which to retrieve information.
field – the field to retrieve.
it – the iteration from which to retrieve information.

Return Value String containing specified field.

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 55

6.1.17 ITDB_GetLastField

Signature char* ITDB_GetLastField (ITDB* db, int key, int
field,
int it)

Description Returns the specified field for the latest iteration that has data.

Argument db – the itdb on which to operate.

key – the value of the key for which to retrieve information.
field – the field to retrieve.
it – the iteration from which to retrieve information.

Return Value String containing specified field.

6.1.18 ITDB_FieldNameToNumber

Signature int ITDB_FieldNameToNumber (ITDB* db, char* name)

Description Converts between field name and field number.

Argument db – the itdb on which to operate.
name – the name to look up.

Return Value Number of the given field, or –1 if it was not found.

6.1.19 ITDB_FieldNumberToName

Signature char* ITDB_FieldNumberToName (ITDB* db, int num)

Description Converts between field number and field name.

Argument db – the itdb on which to operate.
num – the number to look up.

Return Value String containing the field name, or NULL if it was not found.

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 56

6.1.20 ITDB_ItCreate

Signature ITDB_It* ITDB_ItCreate (ITDB* db, int iteration)

Description Creates an iterator for the records of the given iteration.

Argument db – the database over which to iterate.
iteration – the number of the iteration over which to iterate.
If iteration is –1, then do all iterations.

Return Value An iterator set to the first record of the proper iteration.

6.1.21 ITDB_ItCreateRecord

Signature ITDB_It* ITDB_ItCreateRecord (ITDB* db, int key)

Description Creates an iterator for all iterations of the given record.

Argument db – the database over which to iterate.
key – the value of the key for which to return records.

Return Value An iterator set to the first record of the proper iteration.

6.1.22 ITDB_ItDestroy

Signature void ITDB_ItDestroy (ITDB_It* it)

Description Destroys an iterator and frees all resources.

Argument it – the iterator to destroy.

Return Value None.

6.1.23 ITDB_ItReset

Signature void ITDB_ItReset (ITDB_It* it)

Description Resets the iterator to beginning.

Argument it – the iteration on which to operate.

Return Value None.

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 57

6.1.24 ITDB_ItAdvance

Signature void ITDB_ItAdvance (ITDB_It* it)

Description Advances to the next record.

Argument it – the iteration on which to operate.

Return Value None.

6.1.25 ITDB_ItMoreData

Signature int ITDB_ItMoreData (ITDB_It* it)

Description Is there more data?

Argument it – the iteration on which to operate.

Return Value 0 if there is no more data.
non-zero if there is more data.

6.1.26 ITDB_ItGetString

Signature char* ITDB_ItGetString (ITDB_It* it)

Description Returns the current record.

Argument it – the iteration on which to operate.

Return Value A null-terminated string containing a copy of the record. The caller is
responsible for freeing this data.

6.1.27 ITDB_ItGetData

Signature char* ITDB_ItGetData (ITDB_It* it)

Description Returns the current record.

Argument it – the iteration on which to operate.

Return Value A pointer into the mmapped file. Changes to the string will change the
actual file. This pointer should not be freed.

6.1.28 ITDB_StringToArray

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 58

Signature char** ITDB_StringToArray (char* str)

Description Converts a single string containing multiple fields to an array of strings
containing single records.

Argument str – a string containing comma-separated fields.

Return Value An array of strings, one field per string. The last element of the array is

NULL. The caller is responsible for freeing the returned pointer.

6.1.29 ITDB_ArrayToString

Signature char* ITDB_ArrayToString (char** array)

Description Convert an array of fields to a single string.

Argument array – an array of strings containing fields. The last element of the
array must be set to NULL.

Return Value A single string containing the comma-separated fields.

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 59

6.2 Data Structures

6.2.1 ITDB

This structure contains all of the information about an iteration database.

typedef struct itdb_s
{

/** The current iteration number. **/
int iteration;

/** Used to construct the itdb filename. **/
char* base_filename;

/** The name of the current iteration file; base.#.it. **/
char* idx_filename;

/** The file descriptor for the current iteration file. **/
int it_fd;

/** The array of labels for the fields of the database. **/
char* field_labels;

/** The number of fields. **/
int num_fields;

/** The end of the current iteration file. **/
size_t it_pos;

/** The index of all iteration files. **/
BTree* index;
} ITDB;

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 60

6.2.2 ITDB_It

This structure is an iterator into an iteration database.

typedef struct itdbit_s
{

/** The index for this iterator. **/
BTree* index;

/** The index iterator. **/
BTreeIt* index_it;

/** The iteration to iterate through. –1 means all iterations.
**/
int iteration;

/** Iterate through one record only. –1 means all records. **/
int key;

} ITDB_It;

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 61

7. SIMULATION OUTPUT
The simulation output subsystem has C structures and utility functions that are used to
read and write TRANSIMS simulation output files.

7.1 Interface Functions

7.1.1 OutReadHeader

Signature int OutReadHeader (FILE* file, TOutHeader* header)

Description Reads a header from an output table.

Argument file – the pointer to a FILE stream object.
header – the pointer to an output table header structure.

Return Value Nonzero if the header was successfully read, or zero if not.

7.1.2 OutWriteHeader

Signature int OutWriteHeader (FILE* file,
const TOutHeader* header)

Description Writes a header to an output table.

Argument file – pointer to a FILE stream object.

header – pointer to an output table header structure.

Return Value Nonzero if the header was successfully written, or zero if not.

7.1.3 OutSkipHeader

Signature int OutSkipHeader (FILE* file)

Description Skips a header from an output table.

Argument file – the pointer to a FILE stream object.

Return Value Nonzero if the header was successfully skipped, or zero if not.

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 62

7.1.4 OutHeaderHasField

Signature int OutHeaderHasField (const TOutHeader* header,
const char* field)

Description Determines whether an output table header contains a specified field.

Argument header – the pointer to an output table header structure.

field – the pointer to a character string.

Return Value Nonzero if the header contains the specified field, or zero if not.

7.1.5 OutReadNodeSpecification

Signature int OutReadNodeSpecification (FILE* file,
TOutNodeSpecificationRecord* record)

Description Reads a record from a node specification table.

Argument file – the pointer to a FILE stream object.

record – the pointer to an output node specification record structure.

Return Value Nonzero if the record was successfully read, or zero if not.

7.1.6 OutWriteNodeSpecification

Signature int OutWriteNodeSpecification (FILE* file, const
TOutNodeSpecificationRecord* record

Description Writes a record to a node specification table.

Argument file – the pointer to a FILE stream object.

record – the pointer to an output node specification record structure.

Return Value Nonzero if the record was successfully written, or zero if not.

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 63

7.1.7 OutReadLinkSpecification

Signature int OutReadLinkSpecification (FILE* file,
TOutLinkSpecificationRecord* record)

Description Reads a record from a link specification table.

Argument file – the pointer to a FILE stream object.

record – the pointer to an output link specification structure.

Return Value Nonzero if the record was successfully read, or zero if not.

7.1.8 OutWriteLinkSpecification

Signature int OutWriteLinkSpecification (FILE* const
TOutLinkSpecificationRecord* record)

Description Writes a record to a link specification table.

Argument file – the pointer to a FILE stream object.

record – the pointer to an output link specification structure.

Return Value Nonzero if the record was successfully written, or zero if not.

7.1.9 OutReadTravelerEventHeader

Signature int OutReadTravelerEventHeader (FILE* file,
TOutHeader* header, TOutTravelerEventRecord* record)

Description Reads a header from a traveler event table.

Argument file – the pointer to a FILE stream object.

header – the pointer to an output table header structure.
record – the pointer to a traveler event structure.

Return Value Nonzero if the header was successfully read, or zero if not.

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 64

7.1.10 OutWriteTravelerEventHeader

Signature int OutWriteTravelerEventHeader (FILE* file, const
TOutHeader * header, TOutTravelerEventRecord * record)

Description Writes a header to a traveler event table.

Argument file – the pointer to a FILE stream object.

header – the pointer to an output table header structure.
record – the pointer to a traveler event structure.

Return Value Nonzero if the header was successfully written, or zero if not.

7.1.11 OutReadTravelerEvent

Signature int OutReadTravelerEvent (FILE* file,
TOutTravelerEventRecord* record)

Description Reads a record from a traveler event table.

Argument file – the pointer to a FILE stream object.

record – the pointer to a traveler event structure.

Return Value Nonzero if the record was successfully read, or zero if not.

7.1.12 OutReadTravelerEventFromString

Signature int OutReadTravelerEventFromString (const char* buf,
TOutTravelerEventRecord* record)

Description Reads a record from a character buffer (which may not be null

terminated).

Argument buf – the pointer to a character string.
record – the pointer to a traveler event structure.

Return Value Nonzero if the record was successfully read, or zero if not.

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 65

7.1.13 OutWriteTravelerEvent

Signature int OutWriteTravelerEvent (FILE* file,
const TOutTravelerEventRecord* record)

Description Writes a record to a traveler event table.

Argument file – the pointer to a FILE stream object.

record – the pointer to a traveler event structure.

Return Value Nonzero if the record was successfully written, or zero if not.

7.1.14 OutReadVehicleEvolutionHeader

Signature int OutReadVehicleEvolutionHeader (FILE* file,
TOutHeader* header,
TOutVehicleEvolutionRecord* record)

Description Reads a header from a vehicle evolution table.

Argument file – the pointer to a FILE stream object.

header – the pointer to an output table header structure.
record – the pointer to a vehicle evolution structure.

Return Value Nonzero if the header was successfully read, or zero if not.

7.1.15 OutWriteVehicleEvolutionHeader

Signature int OutWriteVehicleEvolutionHeader (FILE* file,
const TOutHeader* header,
TOutVehicleEvolutionRecord* record)

Description Writes a header to a vehicle evolution table.

Argument file – the pointer to a FILE stream object.

header – the pointer to an output table header structure.
record – the pointer to a vehicle evolution structure.

Return Value Nonzero if the header was successfully written, or zero if not.

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 66

7.1.16 OutReadVehicleEvolution

Signature int OutReadVehicleEvolution (FILE* file,
TOutVehicleEvolutionRecord* record)

Description Reads a record from a vehicle evolution table.

Argument file – pointer to a FILE stream object.

record – pointer to a vehicle evolution structure.

Return Value Nonzero if the record was successfully read, or zero if not.

7.1.17 OutWriteVehicleEvolution

Signature int OutWriteVehicleEvolution (FILE* file,
const TOutVehicleEvolutionRecord* record)

Description Writes a record to a vehicle evolution table.

Argument file – the pointer to a FILE stream object.

record – the pointer to a vehicle evolution structure.

Return Value Nonzero if the record was successfully written, or zero if not.

7.1.18 OutReadIntersectionEvolutionHeader

Signature int OutReadIntersectionEvolutionHeader (FILE* file,
TOutHeader* header,
TOutIntersectionEvolutionRecord* record)

Description Reads a header from an intersection evolution table.

Argument file – the pointer to a FILE stream object.

header – the pointer to an output table header structure.
record – the pointer to an intersection evolution structure.

Return Value Nonzero if the header was successfully read, or zero if not.

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 67

7.1.19 OutWriteIntersectionEvolutionHeader

Signature int OutWriteIntersectionEvolutionHeader (FILE* file,
const TOutHeader* header,
TOutIntersectionEvolutionRecord* record)

Description Writes a header to an intersection evolution table.

Argument file – the pointer to a FILE stream object.

header – the pointer to an output table header structure.
record – the pointer to an intersection evolution structure.

Return Value Nonzero if the header was successfully written, or zero if not.

7.1.20 OutReadIntersectionEvolution

Signature int OutReadIntersectionEvolution (FILE* file,
TOutIntersectionEvolutionRecord* record)

Description Reads a record from an intersection evolution table.

Argument file – the pointer to a FILE stream object.

record – the pointer to an intersection evolution structure.

Return Value Nonzero if the record was successfully read, or zero if not.

7.1.21 OutWriteIntersectionEvolution

Signature int OutWriteIntersectionEvolution (FILE* file,
const TOutIntersectionEvolutionRecord* record)

Description Writes a record to an intersection evolution table.

Argument file – the pointer to a FILE stream object.

record – the pointer to an intersection evolution structure

Return Value Nonzero if the record was successfully written, or zero if not.

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 68

7.1.22 OutReadTrafficControlEvolutionHeader

Signature int OutReadTrafficControlEvolutionHeader (FILE* file,
TOutHeader* header,
TOutTrafficControlEvolutionRecord* record)

Description Reads a header from a traffic control evolution table.

Argument file – the pointer to a FILE stream object.

header – the pointer to an output table header structure.
record – the pointer to a traffic control evolution structure.

Return Value Nonzero if the header was successfully read, or zero if not.

7.1.23 OutWriteTrafficControlEvolutionHeader

Signature int OutWriteTrafficControlEvolutionHeader (FILE* file,
const TOutHeader header,
TOutTrafficControlEvolutionRecord record)

Description Writes a header to a traffic control evolution table.

Argument file – the pointer to a FILE stream object.

header – the pointer to an output table header structure.
record – the pointer to a traffic control evolution structure.

Return Value Nonzero if the header was successfully written, or zero if not.

7.1.24 OutReadTrafficControlEvolution

Signature int OutReadTrafficControlEvolution (FILE* file,
TOutTrafficControlEvolutionRecord record)

Description Reads a record from a traffic control evolution table.

Argument file – the pointer to a FILE stream object.

record – the pointer to a traffic control evolution structure.

Return Value Nonzero if the record was successfully read, or zero if not.

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 69

7.1.25 OutWriteTrafficControlEvolution

Signature int OutWriteTrafficControlEvolution (FILE* file,
const TOutTrafficControlEvolutionRecord record)

Description Writes a record to a traffic control evolution table.

Argument file – the pointer to a FILE stream object.

record – the pointer to a traffic control evolution structure.

Return Value Nonzero if the record was successfully written, or zero if not.

7.1.26 OutReadLinkTimeSummaryHeader

Signature int OutReadLinkTimeSummaryHeader (FILE* file,
TOutHeader * header, TOutLinkTimeSummaryRecord*
record)

Description Reads a header from a link time summary table.

Argument file – the pointer to a FILE stream object.

header – the pointer to an output table header structure.
record – the pointer to a link time summary structure.

Return Value Nonzero if the header was successfully read, or zero if not.

7.1.27 OutWriteLinkTimeSummaryHeader

Signature int OutWriteLinkTimeSummaryHeader (FILE* file,
const TOutHeader* header,
TOutLinkTimeSummaryRecord* record)

Description Writes a header to a link time summary table.

Argument file – the pointer to a FILE stream object.

header – the pointer to an output table header structure.
record – the pointer to a link time summary structure.

Return Value Nonzero if the header was successfully written, or zero if not.

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 70

7.1.28 OutReadLinkTimeSummary

Signature int OutReadLinkTimeSummary (FILE* file,
TOutLinkTimeSummaryRecord* record)

Description Reads a record from a link time summary table.

Argument file – the pointer to a FILE stream object.

record – the pointer to a link time summary structure.

Return Value Nonzero if the record was successfully read, or zero if not.

7.1.29 OutWriteLinkTimeSummary

Signature int OutWriteLinkTimeSummary (FILE* file,
const TOutLinkTimeSummaryRecord* record)

Description Writes a record to a link time summary table.

Argument file – the pointer to a FILE stream object.

record – the pointer to a link time summary structure.

Return Value Nonzero if the record was successfully written, or zero if not.

7.1.30 OutReadLinkSpaceSummaryHeader

Signature int OutReadLinkSpaceSummaryHeader (FILE* file,
TOutHeader* header,
TOutLinkSpaceSummaryRecord* record)

Description Reads a header from a link space summary table.

Argument file – the pointer to a FILE stream object.

header – the pointer to an output table header structure.
record – the pointer to a link space summary structure.

Return Value Nonzero if the header was successfully read, or zero if not.

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 71

7.1.31 OutWriteLinkSpaceSummaryHeader

Signature int OutWriteLinkSpaceSummaryHeader (FILE* file,
const TOutHeader* header,
TOutLinkSpaceSummaryRecord* record)

Description Writes a header to a link space summary table.

Argument file – the pointer to a FILE stream object.

header – the pointer to an output table header structure.
record – the pointer to a link space summary structure.

Return Value Nonzero if the header was successfully written, or zero if not.

7.1.32 OutReadLinkSpaceSummary

Signature int OutReadLinkSpaceSummary (FILE* file,
TOutLinkSpaceSummaryRecord* record)

Description Reads a record from a link space summary table.

Argument file – the pointer to a FILE stream object.

record – the pointer to a link space summary structure.

Return Value Nonzero if the record was successfully read, or zero if not.

7.1.33 OutWriteLinkSpaceSummary

Signature int OutWriteLinkSpaceSummary (FILE* file,
const TOutLinkSpaceSummaryRecord* record)

Description Writes a record to a link space summary table.

Argument file – the pointer to a FILE stream object.

record – the pointer to a link space summary structure.

Return Value Nonzero if the record was successfully written, or zero if not.

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 72

7.1.34 OutReadLinkVelocitySummaryHeader

Signature int OutReadLinkVelocitySummaryHeader (FILE* file,
TOutHeader* header,
TOutLinkVelocitySummaryRecord* record)

Description Reads a header from a link velocity summary table.

Argument file – the pointer to a FILE stream object.

header – the pointer to an output table structure defined.
TOutLinkVelocitySummaryRecord – pointer to a link velocity
summary structure.

Return Value Nonzero if the header was successfully read, or zero if not.

7.1.35 OutWriteLinkVelocitySummaryHeader

Signature int OutWriteLinkVelocitySummaryHeader (FILE* file,
const TOutHeader* header,
TOutLinkVelocitySummaryRecord* record)

Description Writes a header to a link velocity summary table.

Argument file – the pointer to a FILE stream object.

header – the pointer to an output table header structure.
record – the pointer to a link velocity summary structure.

Return Value Nonzero if the header was successfully written, or zero if not.

7.1.36 OutReadLinkVelocitySummary

Signature int OutReadLinkVelocitySummary (FILE* file,
TOutLinkVelocitySummaryRecord* record)

Description Reads a record to a link velocity summary table.

Argument file – the pointer to a FILE stream object.

record – the pointer to a link velocity summary structure.

Return Value Nonzero if the record was successfully read, or zero if not.

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 73

7.1.37 OutWriteLinkVelocitySummary

Signature int OutWriteLinkVelocitySummary (FILE* file,
const TOutLinkVelocitySummaryRecord* record)

Description Writes a record to a link velocity summary table.

Argument file – the pointer to a FILE stream object.

record – the pointer to a link velocity summary structure.

Return Value Nonzero if the record was successfully written, or zero if not.

7.1.38 OutReadLinkEnergySummaryHeader

Signature int OutReadLinkEnergySummaryHeader (FILE* file,
TOutHeader* header,
TOutLinkEnergySummaryRecord* record)

Description Reads a header to a link energy summary table.

Argument file – the pointer to a FILE stream object.

header – the pointer to an output table header structure.
record – the pointer to a link energy summary structure.

Return Value Nonzero if the header was successfully read, or zero if not.

7.1.39 OutWriteLinkEnergySummaryHeader

Signature int OutWriteLinkEnergySummaryHeader (FILE* file,
const TOutHeader* header,
TOutLinkEnergySummaryRecord* record)

Description Writes a header to a link energy summary table.

Argument file – the pointer to a FILE stream object.

header – the pointer to an output table header structure.
record – the pointer to a link energy summary structure.

Return Value Nonzero if the header was successfully written, or zero if not.

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 74

7.1.40 OutReadLinkEnergySummary

Signature int OutReadLinkEnergySummary (FILE* file,
TOutLinkEnergySummaryRecord* record)

Description Reads a record to a link energy summary table.

Argument file – the pointer to a FILE stream object.

record – the pointer to a link energy summary structure.

Return Value Nonzero if the record was successfully read, or zero if not.

7.1.41 OutWriteLinkEnergySummary

Signature int OutWriteLinkEnergySummary (FILE* file,
const TOutLinkEnergySummaryRecord* record)

Description Writes a record to a link energy summary table.

Argument file – the pointer to a FILE stream object.

record – the pointer to a link energy summary structure.

Return Value Nonzero if the record was successfully written, or zero if not.

7.1.42 CreateEventFileIndex

Signature void CreateEventFileIndex (const char* filename)

Description Creates two indexes for a traveler event file. The first index (with
extension .trv.idx) is sorted by traveler ID as the primary key and trip ID
as the secondary key. The second index (with extension .loc.idx) is
sorted by location ID as the primary key and traveler ID as the
secondary key.

Argument filename – pointer to a character string containing the name of a

traveler event file.

Return Value None.

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 75

7.2 Data Structures

This structure is used for the output table header.

{

INT8 fFields[512];

7.2.2 TOutNodeSpecificationRecord

This structure is used for output node specification table records.

{

INT32 fNode;

7.2.1 TOutHeader

typedef struct

/** The field names. **/

} TOutHeader;

typedef struct

/** The NODE field. **/

} TOutNodeSpecificationRecord;

7.2.3 TOutLinkSpecificationRecord

This structure is used for output link specification table records.

typedef struct

/** The LINK field. **/

} TOutLinkSpecificationRecord;

This structure is used for traveler event records.

{

/** The TIME field. **/

{

INT32 fLink;

7.2.4 TOutTravelerEventRecord

typedef structure

REAL64 fTime;

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 76

/** The TRAVELER field. **/

/** The TRIP field. **/

INT32 fTraveler;

INT32 fTrip;

/** The LEG field. **/
INT32 fLeg;

/** The VEHICLE field. **/

/** The VEHTYPE field. **/

/** The VSUBTYPE field. **/

/** The ROUTE field. **/

/** The STOPS field. **/
INT32 fStops;

/** The YIELDS field. **/
INT32 fYields;

/** The SIGNALS field. **/
INT32 fSignals;

INT32 fVehicle;

INT32 fVehtype;

INT32 fVsubtype;

INT32 fRoute;

/** The TURN field. **/
INT32 fTurn;

/** The STOPPED field. **/

/** the ACCELS field. **/

/** The TIMESUM field. **/

/** The DISTANCESUM field. **/

/** The USER field. **/

/** The ANOMALY field. **/

REAL64 fStopped;

REAL64 fAccels;

REAL64 fTimesum;

REAL64 fDistancesum;

INT32 fUser;

INT32 fAnomaly;

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 77

/** The STATUS field. **/
INT32 fStatus;

/** The LINK field. **/
INT32 fLink;

INT32 fNode;

INT32 fLocation;

INT8 fFormat[2] [93];

INT32 fOffsets[22];

} TOutTravelerEventRecord;

7.2.5 TOutVehicleEvolutionRecord

typedef struct

/** The TIME field. **/

/** The NODE field. **/

/** The LOCATION field. **/

/** Private: The i/o formats. **/

/** Private: The pointers to the data. **/

This structure is used for vehicle evolution records.

{

REAL64 fTime;

/** The DRIVER field. **/
INT32 fDriver;

INT32 fVehicle;

INT32 fVehtype;

INT32 fLink;

INT32 fNode.;

/** The LANE field. **/

/** The DISTANCE field. **/

/** The VEHICLE field. **/

/** The VEHTYPE field. **/

/** The LINK field. **/

/** The NODE field. **/

INT32 fLane;

REAL64 fDistance;

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 78

/** The VELOCITY field. **/
REAL64 fVelocity;

/** The ACCELER field. **/
REAL64 fAcceler;

INT32 fPassengers;

REAL64 fEasting;

REAL64 fNorthing;

REAL64 fElevation;

/** The AZIMUTH field. **/

/** The USER field. **/

/** Private: The i/o formats. **/

/** The PASSENGERS field. **/

/** The EASTING field. **/

/** The NORTHING field. **/

/** The ELEVATION field. **/

REAL64 fAzimuth;

INT32 fUser;

INT8 fFormat[2] [72];

/** Private: The pointers to the data. **/
INT32 fOffsets[16];

7.2.6 TOutIntersectionEvolutionRecord

This structure is used for intersection evolution records.

typedef struct
{

/** The TIME field. **/
REAL64 fTime;

/** The VEHICLE field. **/
INT32 fVehicle;

INT32 fNode;

INT32 fLink;

} TOutVehicleEvolutionRecord;

/** The NODE field. **/

/** The LINK field. **/

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 79

/** The LANE field. **/
INT32 fLane;

/** The QINDEX field. **/
INT32 fQindex;

/** Private: The i/o formats. **/
INT8 fFormat[2] [25];

/** Private: The pointer to the data. **/
INT32 fOffsets [6];

} TOutIntersectionEvolutionRecord;

7.2.7 TOutTrafficControlEvolutionRecord

This structure is used for traffic control evolution records.

typedef struct

/** The TIME field. **/

/** The NODE field. **/
INT32 fNode;

/** The LINK field. **/
INT32 fLink;

/** The LANE field. **/
INT32 fLane;

{

REAL64 fTime;

/** The SIGNAL field. **/
INT32 fSignal;

/** Private: The i/o formats. **/

/** Private: The pointers to the data. **/

} TOutTrafficControlEvolutionRecord;

INT8 fFormat [2] [21];

INT32 fOffsets[5];

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 80

7.2.8 TOutLinkTimeSummaryRecord

This structure is used for link time summary records.

{

/** The TIME field. **/

/** The LINK field. **/

/** The NODE field. **/

typedef struct

REAL64 fTime;

INT32 fLink;

INT32 fNode;

/** The LANE field. **/
INT32 fLane;

INT32 fTurn;

INT32 fCount;

REAL64 fSum;

REAL64 fSumsquares;

INT32 fVCount;

REAL64 fVSum;

/** The TURN field. **/

/** The COUNT field. **/

/** The SUM field. **/

/** The SUMSQUARES field. **/

/** The VCOUNT field. **/

/** The VSUM field. **/

/** The VSUMSQUARES field. **/
REAL64 fVSumsquares;

/** Private: The i/o formats. **/
INT8 fFormat[2] [49];

/** Private: The pointers to the data. **/
INT32 fOffsets[11];

} TOutLinkTimeSummaryRecord;

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 81

7.2.9 TOutLinkSpaceSummaryRecord

typedef struct

/** The TIME field. **/

/** The LINK field. **/

/** The NODE field. **/

This structure is used for link space summary records.

{

REAL64 fTime;

INT32 fLink;

INT32 fNode;

/** The LANE field. **/
INT32 fLane;

REAL64 fDistance;

INT32 fCount;

REAL64 fSum;

REAL64 fSumsquares;

INT8 fFormat[2] [36];

INT32 fOffsets[8];

/** The DISTANCE field. **/

/** The COUNT field. **/

/** The SUM field. **/

/** The SUMSQUARES field. **/

/** Private: The i/o formats. **/

/** Private: The pointers to the data. **/

} TOutLinkSpaceSummaryRecord;

7.2.10 TOutLinkVelocitySummaryRecord

This structure is used for link velocity summary records.

/** The maximum allowed number of bins in a histogram. **/

/** The structure for link velocity summary records. **/

{

#define HISTOGRAM_MAX_BINS 100

typedef struct

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 82

/** The TIME field. **/
REAL64 fTime;

INT32 fLink;

INT32 fNode.

READ64 fDistance;

/** The LINK field. **/

/** The NODE field. **/

/** The DISTANCE field. **/

/** The COUNT fields. **/
INT32 fCount [HISTOGRAM_MAX_BINS];

/** The number of bins in the histogram. **/
INT32 fNumberBins;

/** Private: The i/o formats. **/
INT8 fFormat[2] [18 + 4 * HISTOGRAM_MAX_BINS];

/** Private: The pointers to the data. **/
INT32 fOffsets[4 + HISTOGRAM_MAX_BINS];

} TOutLinkVelocitySummaryRecord;

7.2.11 TOutLinkEnergySummaryRecord

/** The maximum allowed number of bins in a histogram. **/

/** The structure for link energy summary records. **/

{

This structure is used for link energy summary records.

#define HISTOGRAM_MAX_BINS_100

typedef struct

/** The TIME field. **/
REAL64 fTime;

/** The LINK field. **/
INT32 fLink;

/** The NODE field. **/
INT32 fNode;

/** The ENERGY fields. **/
INT32 fEnergy[HISTOGRAM_MAX_BINS];

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 83

/** The number of bins in the histogram. **/
INT32 fNumberBins;

/** Private: The i/o formats. **/
INT8 fFormat[2] [13 + 3 * HISTOGRAM_MAX_BINS];

/** Private: The pointers to the data. **/
INT32 fOffsets[3 + HISTOGRAM_MAX_BINS];

} TOutLinkEnergySummaryRecord;

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 84

8. TRANSIT
The transit subsystem has C structures and utility functions used to read and write data
from a TRANSIMS transit route file, a TRANSIMS transit schedule file, or a
TRANSIMS transit zone file.

8.1 Interface Functions
The function getNextTransitRouteData () reads transit route data from a transit
route file in ASCII format. The function stores the information in an unmodifiable data
structure (TransitRouteData) and returns a pointer to the structure. Because the
calling program cannot modify the TransitRouteData structure, the data should be
copied if it needs to be changed.

All of these functions work similarly:

• getNextTransitScheduleData ()
• writeTransitScheduleData ()

• writeTransitZoneData ()

8.1.1 moreTransitData

The function writeTransitRouteData () takes a TransitRouteData structure as
an argument containing the information to be written.

• getNextZoneData()

The getNextTransitRouteData (), getNextTransitScheduleData (), or
getNextTransitZoneData () function, when combined with the moreTransit ()
function, provide a mechanism for iterating through the appropriate transit file.

Signature int moreTransitData (FILE* const)

Description The Boolean function used to control iteration through the transit file.

Argument fp – the FILE* pointer for the transit file, which must be open for

reading.

Return Value 1 if not at end of transit data file.
0 if EOF has been reached.

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 85

8.1.2 getNextTransitRouteData

Signature const TransitRouteDate* getNextTransitRouteData
(FILE* const fp)

Description Reads transit route data from the transit route file.

Argument fp – the FILE* pointer to the transit route file, which must be open for

reading.

Return Value The address (containing the transit route read from the file) of a
TransitRouteData structure.
NULL on error.

8.1.3 writeTransitRouteData

Signature int writeTransitRouteData
(FILE* const fp, TransitRouteData* data)

Description Writes the TransitRouteData into a line of the given transit route

file.

Argument fp – FILE* to the transit route file, which must be open for reading.
data – the address of a TransitRouteData structure containing the
data to be written.

Return Value 1 on success.

0 on error.

8.1.4 getNextTransitScheduleData

Signature const TransitScheduleData* getNextTransitScheduleData
(FILE* const fp)

Description Reads transit schedule data from the transit schedule file.

Argument fp – the FILE* pointer to the transit schedule file, which must be open

for reading.

Return Value The address (containing the transit schedule read from the file) of a
TransitScheduleData structure.
NULL on error.

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 86

8.1.5 writeTransitScheduleData

Signature int writeTransitScheduleData
(FILE* const fp, TransitScheduleData* data)

Description Writes the given TransitScheduleData into a line of the given

transit schedule file.

Argument fp – the FILE * pointer to the transit schedule file, which must be open
for writing.
data – the address of a TransitScheduleData structure containing
the data to be written.

Return Value 1 on success.

0 on error.

8.1.6 getNextTransitZoneData

Signature const TransitZoneData* getNextTransitZoneData
(FILE* const fp)

Description Reads transit zone data from the transit zone file.

Argument fp – the FILE* pointer to the transit zone file, which must be open for

reading.

Return Value The address of a TransitZoneData structure containing the transit
zone read from the file.
NULL on error.

8.1.7 writeTransitZoneData

Signature int writeTransitZoneData (FILE* const fp,
TransitZoneData* data)

Description Writes the given TransitZoneData into a line of the given transit

route file.

Argument fp – the FILE* pointer to the transit zone file, which must be open for
writing.
data – the address of a TransitZoneData structure containing the
data to be written.

Return Value 1 on success.

0 on error.

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 87

8.2 Data Structures

8.2.1 TransitStopData
This structure is used for transit stop data as specified in the transit route file.

typedef struct transitstopdata_s
{

/** The stop ID. **/
INT32 fStopId;

/** /The link ID. **/
INT32 fLinkId;

/** The node ID. **/
INT32 fNodeId;

/** The transit zone (0 if none) **/
INT32 fTransitZone;

} TransitStopData;

8.2.2 TransitRouteData
This structure is used for transit route data as specified in the transit route file.

typedef struct transitroutedata s
{

/** The route Id. **/
INT32 fRouteId;

/** The number of stops. **/
INT32 fNumStops;

/** The type of transit for this route. **/
INT8 fTransitType[16];

/** An array of info about stops for this route **/
TransitStopData *fStops;

} TransitRouteData;

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 88

8.2.3 TransitScheduleData
This structure is used for transit schedule data as specified in the transit schedule file.

typedef struct transitscheduledata s
{

/** The stop Id. **/
INT32 fStopId;

/** The route Id. **/
INT32 fRouteId;

/** The arrival time. **/
INT32 fArrivalTime;

} TransitScheduleData;

8.2.4 TransitZoneData
This structure is used for transit zone data as specified in the transit zone file.

typedef struct transitzonedata s
{

/** The source zone. **/
INT32 fFromZone;

/** The destination zone. **/
INT32 fToZone;

/** The cost of travel from FromZone to ToZone on TransitType,
 * in cents.
**/
INT32 fCost;

/** The type of transit for this route. **/
INT8 fTransitType[16];

} TransitZoneData;

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 89

9. NETWORK

9.1 Interface Functions

The following section deals with the network subsystem, which has C structures and
utility functions for reading and writing network data files.

9.1.1 NetReadHeader

Signature int NetReadHeader (FILE* file, TNetHeader* header)

Description Reads a header from a network table.

Argument file – the FILE* pointer for the network data table.
header – the pointer to the TNetHeader structure into which the
header is read.

Return Value Nonzero if the header was successfully read, or zero if not.

9.1.2 NetWriteHeader

Signature int NetWriteHeader (FILE* file,
const TNetHeader* header)

Description Writes a header from a network table.

Argument file – the FILE* pointer for the network data table.

header – the pointer to TNetHeader structure from which the header
is written.

Return Value Nonzero if the header was successfully written, or zero if not.

9.1.3 NetSkipHeader

Signature int NetSkipHeader (FILE* file)

Description Skip a header from a network table.

Argument file – the FILE* pointer for the network data table.

Return Value Nonzero if the header was successfully skipped, or zero if not.

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 90

9.1.4 NetReadActivityLocationHeader

Signature int NetReadActivityLocationHeader (FILE* file, TNetHeader*
header, TNetActivityLocationRecord* record)

Description Reads a header from an activity location table.

Argument file – the FILE* pointer for the network data table.

header – the pointer to the TNetHeader structure into which the
header is read.
record – the pointer to the TNetActivityLocationRecord
structure which is initialized based on the header contents.

Return Value Nonzero if the header was successfully read, or zero if not.

9.1.5 NetReadNode

Signature int NetReadNode (FILE* file, TNetNodeRecord* record)

Description Reads a record from a node table.

Argument file – the FILE* pointer for the network data table.
record – the pointer to the TNetNodeRecord structure into which
the record is read.

Return Value Nonzero if the record was successfully read, or zero if not.

9.1.6 NetWriteNode

Signature int NetWriteNode (FILE* file,
const TNetNodeRecord* record)

Description Writes a record to a node table.

Argument file – the FILE* pointer for the network data table.

record – the pointer to the TNetNodeRecord structure from which
the record is written.

Return Value Nonzero if the record was successfully written, or zero if not.

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 91

9.1.7 NetReadLink

Signature int NetReadLink (FILE* file, TNetLinkRecord* record)

Description Reads a record from a link table.

Argument file – the FILE* pointer for the network data table.
record – the pointer to the TNetLinkRecord structure into which
the record is read.

Return Value Nonzero if the record was successfully read, or zero if not.

9.1.8 NetWriteLink

Signature int NetWriteLink (FILE* file,
const TNetLinkRecord* record)

Description Writes a record to a link table.

Argument file – the FILE* pointer for the network data table.

record – the pointer to the TNetLinkRecord structure from which the
record is written.

Return Value Nonzero if the record was successfully written, or zero if not.

9.1.9 NetReadSpeed

Signature int NetReadSpeed (FILE* file, TNetSpeedRecord* record)

Description Reads a record from a speed table.

Argument file – the FILE* pointer for the network data table.

record – the pointer to the TNetSpeedRecord structure into which
the record is read.

Return Value Nonzero if the record was successfully read, or zero if not.

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 92

9.1.10 NetWriteSpeed

Signature int NetWriteSpeed (FILE* file,
const TNetSpeedRecord* record)

Description Writes a record to a speed table.

Argument file – the FILE* pointer for the network data table.

record – the pointer to the TNetSpeedRecord structure from
which the record is written.

Return Value Nonzero if the record was successfully written, or zero if not.

9.1.11 NetReadPocket

Signature int NetReadPocket (FILE* file,
TNetPocketRecord* record)

Description Reads a record from a pocket lane table.

Argument file – the FILE* pointer for the network data table.

record – the pointer to the TNetPocketRecord structure into which
the record is read.

Return Value Nonzero if the record was successfully read, or zero if not.

9.1.12 NetWritePocket

Signature int NetWritePocket (FILE* file,
const TNetPocketRecord* record)

Description Writes a record to a pocket lane table.

Argument file – the FILE* pointer for the network data table.

record – the pointer to the TNetPocketRecord structure from
which the record is written.

Return Value Nonzero if the record was successfully written, or zero if not.

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 93

9.1.13 NetReadLaneUse

Signature int NetReadLaneUse (FILE* file,
TNetLaneUseRecord* record)

Description Reads a record from a lane use table.

Argument file – the FILE* pointer for the network data table.

record – the pointer to the TNetLaneUseRecord structure into
which the record is read.

Return Value Nonzero if the record was successfully read, or zero if not.

9.1.14 NetWriteLaneUse

Signature int NetWriteLaneUse (FILE* file,
const TNetLaneUseRecord* record)

Description Writes a record to a lane use table.

Argument file – the FILE* pointer for the network data table.

record – the pointer to the TNetLaneUseRecord structure from
which the record is written.

Return Value Nonzero if the record was successfully written, or zero if not.

9.1.15 NetReadParking

Signature int NetReadParking (FILE* file,
TNetParkingRecord* record)

Description Reads a record from a parking table.

Argument file – the FILE* pointer for the network data table.

record – the pointer to the TNetParkingRecord structure into
which the record is read.

Return Value Nonzero if the record was successfully read, or zero if not.

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 94

9.1.16 NetWriteParking

Signature int NetWriteParking (FILE* file,
const TNetParkingRecord* record)

Description Writes a record to a parking table.

Argument file – the FILE* pointer for the network data table.

record – the pointer to the TNetParkingRecord structure from
which the record is written.

Return Value Nonzero if the record was successfully written, or zero if not.

9.1.17 NetReadBarrier

Signature int NetReadBarrier (FILE* file,
TNetBarrierRecord* record)

Description Reads a record from a barrier table.

Argument file – the FILE* pointer for the network data table.

record – the pointer to the TNetBarrierRecord structure into which
the record is read.

Return Value Nonzero if the record was successfully read, or zero if not.

9.1.18 NetWriteBarrier

Signature int NetWriteBarrier (FILE* file,
const TNetBarrierRecord* record)

Description Writes a record to a barrier table.

Argument file – the FILE* pointer for the network data table.

record – the pointer to the TNetBarrierRecord structure from
which the record is written.

Return Value Nonzero if the record was successfully written, or zero if not.

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 95

9.1.19 NetReadTransitStop

Signature int NetReadTransitStop (FILE* file,
TNetTransitStopRecord* record)

Description Reads a record from a transit stop table.

Argument file – the FILE* pointer for the network data table.

record – the pointer to the TNetTransitStopRecord structure into
which the record is read.

Return Value Nonzero if the record was successfully read, or zero if not.

9.1.20 NetWriteTransitStop

Signature int NetWriteTransitStop (FILE* file,
const TNetTransitStopRecord* record)

Description Writes a record to a transit stop table.

Argument file – the FILE* pointer for the network data table.

record – the pointer to the TNetTransitStopRecord structure
from which the record is written.

Return Value Nonzero if the record was successfully written, or zero if not.

9.1.21 NetReadLaneConnectivity

Signature int NetReadLaneConnectivity (FILE* file,
TNetLaneConnectivityRecord* record)

Description Reads a record from a lane connectivity table.

Argument file – the FILE* pointer for the network data table.

record – the pointer to the TNetLaneConnectivityRecord
structure into which the record is read.

Return Value Nonzero if the record was successfully read, or zero if not.

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 96

9.1.22 NetWriteLaneConnectivity

Signature int NetWriteLaneConnectivity (FILE* file,
const TNetLaneConnectivityRecord* record)

Description Writes a record to a lane connectivity table.

Argument file – the FILE* pointer for the network data table.

record – the pointer to the TNetLaneConnectivityRecord
structure from which the record is written.

Return Value Nonzero if the record was successfully written, or zero if not.

9.1.23 NetReadTurnProhibition

Signature int NetReadTurnProhibition (FILE* file,
TNetTurnProhibitionRecord* record)

Description Reads a record from a turn prohibition table.

Argument file – the FILE* pointer for the network data table.

record – the pointer to the TNetTurnProhibitionRecord structure
into which the record is read.

Return Value Nonzero if the record was successfully read, or zero if not.

9.1.24 NetWriteTurnProhibition

Signature int NetWriteTurnProhibition (FILE* file,
const TNetTurnProhibitionRecord* record)

Description Writes a record to a turn prohibition table.

Argument file – the FILE* pointer for the network data table.

record – the pointer to the TNetTurnProhibitionRecord structure
from
which the record is written.

Return Value Nonzero if the record was successfully written, or zero if not.

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 97

9.1.25 NetReadUnsignalizedNode

Signature int NetReadUnsignalizedNode (FILE* file,
TNetUnsignalizedNodeRecord* record)

Description Reads a record from an unsignalized node table.

Argument file – the FILE* pointer for the network data table.

record – the pointer to the TNetUnsignalizedNodeRecord
structure into which the record is read.

Return Value Nonzero if the record was successfully read, or zero if not.

9.1.26 NetWriteUnsignalizedNode

Signature int NetWriteUnignalizedNode(FILE* file,
const TNetUnsignalizedNodeRecord* record)

Description Writes a record to an unsignalized node table.

Argument file – the FILE* pointer for the network data table.

record – the pointer to the TNetUnsignalizedNodeRecord
structure from which the record is written.

Return Value Nonzero if the record was successfully written, or zero if not.

9.1.27 NetReadSignalizedNode

Signature int NetReadSignalizedNode (FILE* file,
TNetSignalizedNodeRecord* record)

Description Reads a record from a signalized node table.

Argument file – the FILE* pointer for the network data table.

record – the pointer to the TNetSignalizedNodeRecord structure
into which the record is read.

Return Value Nonzero if the record was successfully read, or zero if not.

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 98

9.1.28 NetWriteSignalizedNode

Signature int NetWriteSignalizedNode (FILE* file,
const TNetSignalizedNodeRecord* record)

Description Writes a record to a signalized node table.

Argument file – the FILE* pointer for the network data table.

record – the pointer to the TNetSignalizedNodeRecord structure
from which the record is written.

Return Value Nonzero if the record was successfully written, or zero if not.

9.1.29 NetReadPhasingPlan

Signature int NetReadPhasingPlan (FILE* file,
TNetPhasingPlanRecord* record)

Description Reads a record from a phasing plan table.

Argument file – FILE* pointer for the network data table.

record – pointer to TNetPhasingPlanRecord structure into which
the record is read.

Return Value Nonzero if the record was successfully read, or zero if not.

9.1.30 NetWritePhasingPlan

Signature int NetWritePhasingPlan (FILE* file,
const TNetPhasingPlanRecord* record)

Description Writes a record to a phasing plan table.

Argument file – the FILE* pointer for the network data table.

record – the pointer to the TNetPhasingPlanRecord structure from
which the record is written.

Return Value Nonzero if the record was successfully written, or zero if not.

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 99

9.1.31 NetReadTimingPlan

Signature int NetReadTimingPlan (FILE* file,
TNetTimingPlanRecord* record)

Description Reads a record from a timing plan table.

Argument file – the FILE* pointer for the network data table.

record – the pointer to the TNetTimingPlanRecord structure into
which the record is read.

Return Value Nonzero if the record was successfully read, or zero if not.

9.1.32 NetWriteTimingPlan

Signature int NetWriteTimingPlan (FILE* file,
const TNetTimingPlanRecord * record)

Description Writes a record to a timing plan table.

Argument file – the FILE* pointer for the network data table.

record – the pointer to the TNetTimingPlanRecord structure from
which the record is written.

Return Value Nonzero if the record was successfully written, or zero if not.

9.1.33 NetReadDetector

Signature int NetReadDetector (FILE* file,
TNetDetectorRecord* record)

Description Reads a record from a detector table.

Argument file – the FILE* pointer for the network data table.

record – the pointer to the TNetDetectorRecord structure into
which the record is read.

Return Value Nonzero if the record was successfully read, or zero if not.

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 100

9.1.34 NetWriteDetector

Signature int NetWriteDetector (FILE* file,
const TNetDetectorRecord* record)

Description Writes a record to a detector table.

Argument file – the FILE* pointer for the network data table.

record – the pointer to the TNetDetectorRecord structure from
which the record is written.

Return Value Nonzero if the record was successfully written, or zero if not.

9.1.35 NetReadSignalCoordinator

Signature int NetReadSignalCoordinator (FILE* file,
TNetSignalCoordinatorRecord* record)

Description Reads a record from a signal coordinator table.

Argument file – The FILE* pointer for the network data table.

record – The pointer to the TNetSignalCoordinatorRecord
structure into which the record is read.

Return Value Nonzero if the record was successfully read, or zero if not.

9.1.36 NetWriteSignalCoordinator

Signature int NetWriteSignalCoordinator (FILE* file,
const TNetSignalCoordinatorRecord* record)

Description Writes a record to a signal coordinator table.

Argument file – the FILE* pointer for the network data table.

record – the pointer to the TNetSignalCoordinatorRecord
structure from which the record is written.

Return Value Nonzero if the record was successfully written, or zero if not.

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 101

9.1.37 NetReadActivityLocation

Signature int NetReadActivityLocation (FILE* file,
TNetActivityLocationRecord* record)

Description Reads a record from an activity location table.

Argument file – the FILE* pointer for the network data table.

record – the pointer to the TNetActivityLocationRecord
structure into which the record is read.

Return Value Nonzero if the record was successfully read, or zero if not.

9.1.38 NetWriteActivityLocation

Signature int NetWriteActivityLocation (FILE* file, const
TNetActivityLocationRecord* record)

Description Writes a record to a process link table.

Argument

Signature int NetReadProcessLink (FILE* file,
TNetProcessLinkRecord* record)

Description

Argument file – the FILE* pointer for the network data table.

Return Value

file – the FILE* pointer for the network data table.
record – the pointer to the TNetActivityLocationRecord
structure from which the record is written.

Return Value Nonzero if the record was successfully written, or zero if not.

9.1.39 NetReadProcessLink

Reads a record from a process link table.

record – the pointer to the TNetProcessLinkRecord structure into
which the record is read.

Nonzero if the record was successfully read, or zero if not.

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 102

9.1.40 NetWriteProcessLink

Signature int NetWriteProcessLink (FILE* file,
const TNetProcessLinkRecord* record)

Description

Argument file – the FILE* pointer for the network data table.

Signature int NetReadStudyAreaLink (FILE* file,
TNetStudyAreaLinkRecord* record)

Description

Argument file – the FILE* pointer for the network data table.
record – the pointer to the TNetStudyAreaLinkRecord structure
into which the record is read.

Return Value

const TNetStudyAreaLinkRecord* record)

Writes a record to a study area link table.

file – the FILE* pointer for the network data table.
record – the pointer to the TNetStudyAreaLinkRecord structure
from which the record is written.

Return Value

Writes a record to a process link table.

record – the pointer to the TNetProcessLinkRecord structure from
which the record is written.

Return Value Nonzero if the record was successfully written, or zero if not.

9.1.41 NetReadStudyAreaLink

Reads a record from a study area link table.

Nonzero if the record was successfully read, or zero if not.

9.1.42 NetWriteStudyAreaLink

Signature int NetWriteStudyAreaLink (FILE* file,

Description

Argument

Nonzero if the record was successfully written, or zero if not.

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 103

9.2 Data Structures

9.2.1 TNetHeader

This structure is used for all of the network table header.

typedef struct

{
/** The ID field. **/

/** The NORTHING field. **/

/** The NOTES field. **/
INT8 fNotes[256];

{

/** The field names. **/
INT8 fFields[512];

} TNetHeader;

9.2.2 TNetNodeRecord

This structure is used for network node table records.

typedef struct

INT32 fId;

/** The EASTING field. **/
REAL64 fEasting;

REAL64 fNorthing;

/** The ELEVATION field. **/
REAL64 fElevation;

} TNetNodeRecord;

9.2.3 TNetLinkRecord

This structure isused for network link table records.

typedef struct
{

/** The ID field. **/
INT32 fId;

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 104

/** The NAME field. **/

/** The NODEB field. **/

/** The PERMLANESB field. **/
INT32 fPermlanesb;

/** The LEFTPCKTSB field. **/

INT32 fRightpcktsb;

REAL64 fLength;

REAL64 fGrade;

REAL64 fSetbackb;

/** The CAPACITYA field. **/

INT8 fName[51];

/** The NODEA field. **/
INT32 fNodea;

INT32 fNodeb;

/** The PERMLANESA field. **/
INT32 fPermlanesa;

/** The LEFTPCKTSA field. **/
INT32 fLeftpcktsa;

INT32 fLeftpcktsb;

/** The RIGHTPCKTSA field. **/
INT32 fRightpcktsa;

/** The RIGHTPCKTSB field. **/

/** The TWOWAYTURN field. **/
INT8 fTwowayturn[2];

/** The LENGTH field. **/

/** The GRADE field. **/

/** The SETBACKA field. **/
REAL64 fSetbacka;

/** The SETBACKB field. **/

INT32 fCapacitya;

/** The CAPACITYB field. **/
INT32 fCapacityb;

/** The SPEEDLMTA field. **/
REAL64 fSpeedlmta;

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 105

/** The SPEEDLMTB field. **/
REAL64 fSpeedlmtb;

REAL64 fFreespda;

REAL64 fFreespdb;

/** The FUNCTCLASS field. **/
INT8 fFunctclass[11];

/** The THRUB field. **/
INT32 fThrub;

/** The VEHICLE field. **/

9.2.4 TNetSpeedRecord

{

/** The LINK field. **/

/** The SPEEDLMT field. **/

/** The FREESPDA field. **/

/** The FREESPDB field. **/

/** The THRUA field. **/
INT32 fThrua;

/** The COLOR field. **/
INT32 fColor;

INT8 fVehicle[101];

/** the NOTES field. **/
INT8 fNotes[256];

} TNetLinkRecord;

This structure is used for network speed table records.

typedef struct

INT32 fLink;

/** The NODE field. **/
INT32 fNode;

REAL64 fSpeedlmt;

/** The FREESPD field. **/
REAL64 fFreespd;

/** The VEHICLE field. **/
INT8 fVehicle[101];

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 106

/** The STARTTIME field. **/
INT8 fStarttime[9];

This structure is used for network pocket lane table records.

INT32 fId;

INT32 fLink;

/** The STYLE field. **/

/** The ENDTIME field. **/
INT8 fEndtime[9];

/** The NOTES field. **/
INT8 fNotes[256]

} TNetSpeedRecord;

9.2.5 TNetPocketRecord

typedef struct
{

/** The ID field. **/

/** The NODE field. **/
INT32 fNode;

/** The LINK field. **/

/** The OFFSET field. **/
REAL64 fOffset;

/** The LANE field. **/
INT32 fLane;

INT8 fStyle[2];

/** The LENGTH field. **/
REAL64 fLength;

/** The NOTES field. **/
INT8 fNotes[256];

} TNetPocketRecord;

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 107

9.2.6 TNetLaneUseRecord

This structure is used for network lane use table records.

{

/** The VEHICLE field. **/

/** The STARTTIME field. **/

} TNetLaneUseRecord

INT32 fNode;

typedef struct

/** The NODE field. **/
INT32 fNode;

/** The LINK field. **/
INT32 fLink;

/** The LANE field. **/
INT32 fLane;

INT8 fVehicle[101];

/** The RESTRICT field. **/
INT8 fRestrict[2];

INT8 fStarttime[9];

/** The ENDTIME field. **/
INT8 fEndtime[9];

/** The NOTES field. **/
INT8 fNotes[256];

9.2.7 TNetParkingRecord

This structure is used for network parking table records.

typedef struct
{

/** The ID field. **/
INT32 fId;

/** The NODE field. **/

/** The LINK field. **/
INT32 fLink;

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 108

/** The OFFSET field. **/
REAL64 fOffset;

This structure is used for network barrier table records.

INT32 fLink;

/** The STYLE field. **/
INT8 fStyle[6];

/** The CAPACITY field. **/
INT32 fCapacity;

/** The GENERIC field. **/
INT8 fGeneric[2];

/** The VEHICLE field. **/
INT8 fVehicle[101];

/** The STARTTIME field. **/
INT8 fStarttime[9];

/** The ENDTIME field. **/
INT8 fEndtime[9];

/** The NOTES field. **/
INT8 fNotes[256];

} TNetParkingRecord;

9.2.8 TNetBarrierRecord

typedef struct
{

/** The ID field. **/
INT32 fId;

/** The NODE field. **/
INT32 fNode;

/** The LINK field. **/

/** The OFFSET field. **/
REAL64 fOffset;

/** The LANE field. **/
INT32 fLane;

/** The STYLE field. **/
INT8 fStyle[11];

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 109

/** The LENGTH field. **/
REAL64 fLength;

/** The NOTES field. **/
INT8 fNotes[256];

} TNetBarrierRecord;

9.2.9 TNetTransitStopRecord

This structure is used for network transit stop table records.

typedef struct
{

/** The ID field. **/

INT32 fLink;

REAL64 fOffset;

INT8 fVehicle[101];

INT32 fId;

/** The NAME field. **/
INT8 fName[51];

/** The NODE field. **/
INT32 fNode;

/** The LINK field. **/

/** The OFFSET field. **/

/** The VEHICLE field. **/

/** The STYLE field. **/
INT8 fStyle[11];

/** The CAPACITY field. **/
INT32 fCapacity;

/** The NOTES field. **/
INT8 fNotes[256];

} TNetTransitStopRecord;

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 110

9.2.10 TNetLaneConnectivityRecord

This structure is used for network lane connectivity table records.

typedef struct
{

INT32 fInlink;

INT32 fOutlink;

} TNetLaneConnectivityRecord;

{

/** The NODE field. **/
INT32 fNode;

/** The INLINK field. **/

/** The INLANE field. **/
INT32 fInlane;

/** The OUTLINK field. **/

/** The OUTLANE field. **/
INT32 fOutlane;

/** The NOTES field. **/
INT8 fNotes[256];

9.2.11 TNetTurnProhibitionRecord

This structure is used for network turn prohibition table records.

typedef struct

/** The NODE field. **/
INT32 fNode;

/** The INLINK field. **/
INT32 fInlink;

/** The OUTLINK field. **/
INT32 fOutlink;

/** The STARTTIME field. **/
INT8 fStarttime[9];

/** The ENDTIME field. **/
INT8 fEndtime[9];

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 111

/** The NOTES field. **/
INT8 fNotes[256];

INT32 fInlink;

INT8 fNotes;

/** The NODE field. **/

/** The TYPE field. **/

REAL64 fOffset;

INT8 fStarttime[9];

INT32 fCoordinatr;

} TNetTurnProhibitionRecord;

9.2.12 TNetUnsignalizedNodeRecord

This structure is used for network unsignalized node table records.

typedef struct
{

/** The NODE field. **/
INT32 fNode;

/** The INLINK field. **/

/** The SIGN field. **/
INT8 fSign[2];

/** The NOTES field. **/

} TNetUnsignalizedNodeRecord;

9.2.13 TNetSignalizedNodeRecord

This structure is used for network signalized node table records.

typedef struct
{

INT32 fNode;

INT8 fType[2];

/** The PLAN field. **/
INT32 fPlan;

/** The OFFSET field. **/

/** The STARTTIME field. **/

/** The COORDINATR field. **/

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 112

/** The RING field. **/
INT8 fRing[2];

/** The ALGORITHM field. **/
INT8 fAlgorithm[11];

/** The NOTES field. **/
INT8 fNotes[256];

} TNetSignalizedNodeRecord;

9.2.14 TNetPhasingPlanRecord

This structure is used for network phasing plan table records.

typedef struct
{

/** The NODE field. **/
INT32 fNode;

/** The PLAN field. **/
INT32 fPlan;

/** The PHASE field. **/
INT32 fPhase;

/** The INLINK field. **/
INT32 fInlink;

/** The OUTLINK field. **/
INT32 fOutlink;

/** The PROTECTION field. **/
INT8 fProtection[2];

/** The DETECTORS field. **/
INT8 fDetectors[51];

/** The NOTES field. **/
INT8 fNotes[256];

} TNetPhasingPlanRecord;

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 113

9.2.15 TNetTimingPlanRecord

This structure is used for network timing plan table records.

typedef struct
{

/** The PLAN field. **/
INT32 fPlan;

/** The GREENEXT field. **/

/** The PHASE field. **/
INT32 fPhase;

/** The NEXTPHASES field. **/
INT8 fNextphases[21];

/** The GREENMIN field. **/
REAL64 fGreenmin;

/** The GREENMAX field. **/
REAL64 fGreenmax;

REAL64 fGreenext;

/** The YELLOW field. **/
REAL64 fYellow;

/** The REDCLEAR field. **/
REAL64 fRedclear;

/** The GROUPFIRST field. **/
INT32 fGroupfirst;

/** The NOTES field. **/
INT8 fNotes[256];

} TNetTimingPlanRecord;

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 114

9.2.16 TNetDetectorRecord

This structure is used for network detector table records.

typedef struct
{

/** The ID field. **/
INT32 fId;

/** The LANEBEGIN field. **/

REAL64 fLength;

/** The NODE field. **/
INT32 fNode;

/** The LINK field. **/
INT32 fLink;

/** The OFFSET field. **/
REAL64 fOffset;

INT32 fLanebegin;

/** The LANEEND field. **/
INT32 fLaneend;

/** The LENGTH field. **/

/** The STYLE field. **/
INT8 fStyle[11];

/** The COORDINATR field. **/
INT8 fCoordinatr[51];

/** The CATEGORY field. **/
INT8 fCategory[11];

/** The NOTES field. **/
INT8 fNotes[256];

} TNetDetectorRecord;

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 115

9.2.17 TNetSignalCoordinatorRecord

This structure is used for network signal coordinator table records.

typedef struct
{

This structure is used for activity location table records.

#define ACTIVITY_MAX_USER 20

/** The LINK field. **/

/** The LAYER field. **/

/** The ID field. **/
INT32 fId;

/** The TYPE field. **/
INT8 fType[11];

/** The ALGORITHM field. **/
INT8 fAlgorithm[11];

/** The NOTES field. **/
INT8 fNotes;

} TNetSignalCoordinatorRecord;

9.2.18 TNetActivityLocationRecord

/** Maximum allowed optional user-defined fields in activity
 * location data.
 **/

typedef struct
{

/** The ID field. **/
INT32 fId;

/** The NODE field. **/
INT32 fNode;

INT32 fLink;

/** The OFFSET field. **/
REAL64 fOffset;

INT8 fLayer[11];

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 116

/** The EASTING field. **/

/** The NORTHING field. **/

 * values in the array is variable, but must be the same in each

/** The names of the fields in fUser Data. **/

} TNetActivityLocationRecord;

9.2.19 TNetProcessLinkRecord

This structure is used for process link table records.

{

/** The ID field. **/

INT8 fFromtype[11];

/** The TOTYPE field. **/
INT8 fTotype[11];

REAL64 fEasting;

REAL64 fNorthing;

/** The ELEVATION field. **/
REAL64 fElevation;

/** The number of values in the fUserName and fUser Data arrays.
INT32 fNumberUser;

/** Optional array of user-defined real values. The number of

 * record. The data will typically be related to land use.
 * The optional fields immediately precede the NOTES field.
 **/
REAL64 fUserData[ACTIVITY_MAX_USER];

INT8 fUserNames[ACTIVITY_MAX_USER] [32];

/** The NOTES field. **/
INT8 fNotes[256];

typedef struct

INT32 fId;

/** The FROMID field. **/
INT32 fFromid;

/** The FROMTYPE field. **/

/** The TOID field. **/
INT32 fToid;

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 117

/** The DELAY field. **/
REAL64 fDelay;

/** The COST field. **/
REAL64 fCost;

9.2.20 TNetStudyAreaLinkRecord

/** The ID field. **/

/** The NOTES field. **/
INT8 fNotes;

/** The NOTES field. **/
INT8 fNotes[256];

} TNetProcessLinkRecord;

This structure is used for network study area link table records.

typedef struct
{

INT32 fId;

/** The BUFFER field. **/
INT8 fBuffer[2];

} TNetStudyAreaLinkRecord;

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 118

10. INDEXING
TRANSIMS data files (particularly the activity, plan, output, and iteration database files)
may be very large. Furthermore, the following common operations on these files must be
efficient:

• modifying small, randomly scattered records,

10.1 Interface Functions

Creates a new index; does not add any entries to the index file.

date_file – the name of the file where the data resides.
index_file – the name of the index file to create.

Return Value

• merging modifications back into the original file,

• sorting on several different keys, and

• retrieving specified records.

File indexing provides a mechanism for efficient use of these large files.

TRANSIMS provides a C library that supports accessing files through an associated
index. It also incorporates a particular strategy for using this library within the
TRANSIMS Framework. This section describes the indexes and the library routines and
the way they are used within TRANSIMS.

10.1.1 BTree_Create

Signature void BTree_Create (BTree* tree,
const char* data_file,
const char* index_file)

Description

Argument tree – the tree to create; assumes tree is a valid pointer.

None.

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 119

10.1.2 BTree_Open

Signature void BTree_Open (BTree* tree, const char* index_file)

Return Value

Description Closes a btree and releases resources.

Argument tree – the tree to close; the pointer is not freed.

None.

10.1.4 BTree_CreateFromFile

const char* index_file, enum act_keys key1,

Description Opens an existing btree index file.

Argument tree – the tree to open; assumes tree is a valid pointer.

index_file – the name of the index file to open.

None.

10.1.3 BTree_Close

Signature void BTree_Close (BTree* tree)

Return Value

Signature BTree* BTree_CreateFromFile (const char* data_file,

enum act_keys key2)

Description Creates a btree from a given data file.

Argument data_file – the datafile from which to read entries.
 index_file – the index file to which entries will be added.
key1 – the field number of the primary key.
key2 – the field number of the secondary key.

Return Value A new index containing the entries from the data file.

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 120

10.1.5 BTree_AddFileToIndex

Signature void BTree_AddFileToIndex (BTree* tree, char* data_file)

Description Adds entries in file to tree.

Argument tree – the tree to which entries will be added.

data_file – the data file from which to take entries.

Return Value None.

10.1.6 BTree_Insert

Signature

Argument

None.

Description

Return Value

void BTree_Insert (BTree* tree, BTreeEntry* entry)

Description Inserts an entry into a btree.

tree – the index to which entries will be added.
entry – the entry to add.

Return Value

10.1.7 BTree_AddFilename

Signature int BTree_AddFilename (BTree* tree, char* filename)

Description Adds an additional data filename.

Argument tree – the tree to which the filename will be added.
filename – the data file to add.

Return Value The filenumber of the added filename.

10.1.8 BTree_GetFilename

Signature char* BTree_GetFilename (BTree* tree, int i)

Converts from the filenumber in a BTreeEntry to filename.

Argument tree – the tree in which to do the lookup.
i– the filenumber to look up.

The filename of the corresponding data file, or NULL if there is no such
data file.

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 121

10.1.9 BTree_GetFileNumber

int BTree_GetFileNumber (BTree* tree,

Description

Argument

Signature

Description

Argument

void BTree_RenumberFiles(BTree* tree, int dest, int src)

Renumbers the filenumber in entries of a tree.

tree – the tree in which to do the renumbering.

Signature

const char* filename)

Converts from the filename to the filenumber.

tree – the tree in which to do the lookup.
filename – the data filename to look up.

Return Value The filenumber of the corresponding data file, or –1 if there is no such

data file.

10.1.10 BTree_ClearFilename

void BTree_ClearFilename (BTree* tree)

Removes all filenames.

tree – the tree from which to remove filenames.

Return Value None.

10.1.11 BTree_RenumberFiles

Signature

Description

Argument
dest – the new filenumber.
src – the old filenumber, if –1 renumber all entries.

Return Value None.

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 122

10.1.12 BTree_GetDataPointer

10.1.13 BTree_GetDataLine

tree – the tree in which to do lookup.

10.1.14 BTree_FindEntry

BTreeEntry* BTree_FindEntry (BTree* tree, BTreeEntry* e)

e – the entry to find, only needs keys to be set up correctly.

Signature char* BTree_GetDataPointer (BTree* tree, BTreeEntry* e)

Description Gets entry in the data file for entry.

Argument tree – the tree in which to do lookup.

e – the entry for which to find data.

Return Value A pointer into the mmaped file, or NULL if the data is not found. The
pointer is not null-terminating (‘\0’). Any changes made through this
pointer will be reflected in the data file. This pointer should not be
freed.

Signature char* BTree_GetDataLine (BTree* tree, BTreeEntry* e)

Description Gets entry in the data file for entry.

Argument

e – the entry for which to find data.

Return Value A copy of the data, or NULL if the data is not found. The pointer is null-
terminated (‘\0’). Any changes made through this pointer will not be
reflected in the data file. The caller is responsible for freeing this
pointer.

Signature

Description Finds an entry in a tree.

Argument tree – the tree in which to do the search.

Return Value The complete entry in the tree, or NULL if the entry was not found.

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 123

10.1.15 BTree_Validate

Signature void BTree_Validate (BTree* tree, const char* from)

Description Validates a tree. Currently, checks for the following:
- the proper order of elements in the tree

10.1.17 BTreeIt_Create

- the correct number of entries
- stuff in the valid subtree
 - the valid key types
 - the valid filenumber
 - the valid child pointers

Argument tree – the tree to validate.

from – where called from, used to print message (only if problem
found).

Return Value None.

10.1.16 BTree_DeleteEntry

Signature void BTree_DeleteEntry (BTree* tree, BTreeEntry* e)

Description Deletes an index entry in a tree. Does not modify any data files.

Argument tree – the tree from which to delete.
e – the entry to delete.

Return Value None.

Signature BTreeIt* BTreeIt_Create (BTree* tree)

Description Creates an iterator to a tree.

Argument tree – the tree into which to point.

Return Value An iterator into the tree. This iterator should be destroyed with

BTreeIt_Destroy () to free all resources. This iterator is invalid if
the tree is modified.

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 124

10.1.18 BTreeIt_Reset

Argument

Return Value

void BTreeIt_Advance (BTreeIt* it)

it – the iterator to advance.

None.

Signature

Are we at the end of the index?

it – the iterator to check.

0 if there are no more entries; non-zero if there are more entries.

Argument

A pointer to the current entry in the tree, or NULL if the iterator is
invalid. The entry should not be modified or freed.

Signature void BTreeIt_Reset (BTreeIt* it)

Description Resets an iterator to point to the first entry of the tree.

it – the iterator to reset.

None.

10.1.19 BTreeIt_Advance

Signature

Description Advances the iterator to the next entry in the tree.

Argument

Return Value

10.1.20 BTreeIt_MoreData

int BTreeIt_MoreData (BTreeIt* it)

Description

Argument

Return Value

10.1.21 BTreeIt_Get

Signature BTreeEntry* BTreeIt_Get (BTreeIt* it)

Description Gets the entry to which the iterator points.

it – the iterator to query.

Return Value

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 125

10.1.22 BTreeIt_Destroy

Signature void BTreeIt_Destroy (BTreeIt* it)

Description Destroys an iterator and frees all resources.

Argument it – the iterator to destroy.

Return Value None.

tree – the tree in which to find the iterator.

Return Value

10.1.24 BTreeIt_Compare_Equal

Compares two iterators.

i1, i2 – iterators to compare.

0 if the iterators do not point to the same entry in the tree; non-zero if
they do point to the same entry.

10.1.23 BTreeIt_GetIterator

Signature BTreeIt* BTreeIt_GetIterator (BTree* tree, BTreeEntry* e)

Description Returns an iterator pointing to an entry in the tree.

Argument

e – the entry to set the iterator to, only needs keys to be set up correctly.

An iterator that points to e; or NULL if e was not found.

Signature int BTreeIt_Compare_Equal (BTreeIt* i1, BTreeIt* i2)

Description

Argument

Return Value

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 126

10.2 Data Structures

10.2.1 Key

This structure is used to represent the value of a key.

typedef union u_key

int I;
float f;

/** The secondary Key. **/
Key key2;

/** The number of the data file. **/
short file;

} BTreeEntry;

{

/** A key can be either an integer or a floating point number.
**/

} Key;

10.2.2 BTreeEntry

This structure is used as an index entry; it holds two keys—the filenumber and offset
where the data resides.

typedef struct btree_entry_s
{

/** The primary Key. **/
Key key1;

off_t offset;

char key_type;

/** Unused. **/

/** The number of bytes from the beginning of file. **/

/** The key data types. **/

char pad;

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 127

10.2.3 BTreeNode

/** The number of keys currently in this node. **/

struct btree_entry key [BTREE_ORDER];

off_t child[BTREE_ORDER+1];

/** Padding to make node even multiple of page size. **/
char pad[20];

10.2.4 BTree

typedef struct btree_s

struct btree_node* index;

size_t allocated;

This structure is used as the node of a btree; it holds up to BTREE_ORDER entries and
BTREE_order+1 children.

typedef struct btree_node_s
{

int keys;

/** Is this a leaf node? **/
int leaf;

/** The data to be stored. **/

/** The child pointers. **/

} BTreeNode;

This structure contains information about a btree. It is sized so that it takes up the first
page of the btree index file (BTREE_PAGESIZE bytes). One btree can have up to 255 data
files, with a combined filename length of 5596 bytes.

{

/** The index of the root of the tree. **/
off_t root;

/** The index file. **/
int index_fd;

/** The start of the node array. **/

/** The number of nodes used. **/
size_t size;

/** The number of nodes allocated. **/

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 128

/** The number of entries in the tree. **/
size_t entries;

/** The height of the tree. **/
size_t height;

/** The field number of key1. **/
short key1;

char version;

/** The file descriptors for the data files. **/

/** The pointers to the mmaped files. **/
char* data[256];

/** The offset in the filename array of filenames. **/

/** The names of the index files. **/
char filename[5596];

} BTree;

typedef struct btree_it

/** The height of the tree. **/
int height;

/** The level in the tree of the iterator. **/

/** The field number of key2. **/
short key2;

/** The order of this btree, used as a sanity check. **/
short order;

/** The number of data files. **/
char num_filenames;

/** The version of the btree file, used as a sanity check. **/

int data fd[256];

short filename_off[256];

10.2.5 BtreeIt

This structure holds a pointer into a btree index.

{

/** The tree into which this iterator points. **/
BTree* tree;

int level;

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 129

/** The path from the root of the tree to the current
 * position.
**/
off_t* node;

10.3 Utility Programs

10.3.1 IndexFilenames

/** The current key number at each level in the path. **/
size_t* key;

} BTreeIt;

The purpose of this tool is to allow easy inspection and reassignment of the data
filenames referred to by an index.

Each index file maintains a directory listing the names of the data files to which its
entries refer, and a default UNIX directory path that is prepended to any filenames that do
not begin with the character “/”. The directory entries themselves contain pointers into
this list of filenames. When a data file is moved, it is more efficient to update the list of
filenames than to recreate the index.

This tool can be invoked in either “write” or “read” mode. In write mode, it simply prints
the default directory and filenames, one per line, into a file. In read mode, it reads the
default directory and filenames from a file and overwrites the current settings in the index
file.

Usage:

 % IndexFilenames <index> <command> <file>

Where <index> is the index file to read or modify, <command> is “w” to write the
names of the data files to <file> or “r” to read the names of the data files from <file>.
The first line of <file> is the default directory, which will be prepended to any data
filename that does not begin with a “/” or “.”. For example, to change the name of
location of the data files for the local activities household index, the following commands
would be needed:

% IndexFilenames local.act.hh.idx w names
% vi names # edit names of data files
% IndexFilename local.act.hh.idx r names

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 130

Example:

This example shows how to update the index plans.tim.idx if the data files it refers to are
moved from /tmp to /home/eubank.

gershwin 1> $TRANSIMS_HOME/bin/IndexFilenames plans.tim.idx w names
gershwin 2> cat names
/tmp
plans.1
plans.2
gershwin 3> cat > newnames
/home/eubank
plans.1
plans.2
gershwin 4> $TRANSIMS_HOME/bin/IndexFilenames plans.tim.idx r newnames

Troubleshooting:

It is an error to reduce the number of filenames held in an index’s directory, since some
entries will no longer point to a valid filename. It is not an error to have duplicate
filenames, although it may cause inefficient memory use when the index is used.

10.3.2 IndexActivityFile, IndexPlanFile, IndexVehFile,
IndexPopulationFile, IndexTravelTimeFile, IndexEventFile

These standalone utilities create index files for the TRANSIMS population, activity, plan,
vehicle, travel time, and microsimulation event files. The types of indexes and
corresponding suffixes are listed in Table 4. The index files are created in the same
directory as the original file.

Usage:

 $ IndexPopulationFile <population file>
 $ IndexActivityFile <activity file>
 $ IndexPlanFile <plan file>
 $ IndexVehFile <vehicle file>
 $ IndexTravelTimeFile <travel time file>
 $ IndexEventFile <microsimulation event file>

All defined indexes for the files are created. If, for example, the traveler index,
plan_file.trv.idx, already exists for a plan file but the departure time index,
plan_file.tim.idx, does not exist, IndexPlanFile will create the time index. If neither index
exists, both will be created by IndexPlanFile.

10.3.3 MergeIndices

The purpose of the MergeIndices tool is to merge and update potentially large data files
without touching all of the data on disk. For example, a 100 Megabyte plan file can be
merged with another 100 Megabyte plan file and the result sorted by both departure time
and traveler ID simply by merging and sorting the indexes for each file properly.

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 131

For each input index specified on the command line, copy the desired entries from that
index into an output index. Only those entries whose primary key has not been seen in a
previously processed index are desired. The input indexes are processed from last to first,
so this restriction essentially means that entries from indexes specified later on the
command line overwrite those specified earlier on the command line.

Usage:

 % MergeIndices <output-name> <index1> [<index2> [<index3> ...]]

Example:

The following command will merge the indexes for transit driver plans stored in the file
plans.transit, plans from the first iteration of the Route Planner stored in plans.pop.1, and
plans from the second iteration of the Route Planner stored in plans.pop.2:
% MergeIndices out.trv.idx plans.transit.trv.idx plans.pop.1.trv.idx plans.pop.2.trv.idx

The output index will be out.trv.idx. Assuming all of the transit driver IDs are distinct
from other members of the population, out.trv.idx will contain all of the transit driver
plans, all of the plans from plans.pop.2, and plans for all of the travelers in plans.pop.1
who did not appear in plans.pop.2.

The resulting index can be used to create an index sorted by time using the IndexPlanFile
tool. (Remove any existing out.tim.idx first.) Alternatively, the Traffic Microsimulator
will create the index sorted by time when it is next run. These indexes can be used
directly by the Traffic Microsimulator (or distributed using the DistributePlans tool, or
viewed using the PlanFilter tool) without the need to create an actual file out containing
all the data for the plan legs. If desired, such a file could be created using the -d option of
the PlanFilter tool.

Troubleshooting:

Only the primary key is used to distinguish entries. Thus, MergeIndices works well for
plans indexed by traveler ID, but not for plans indexed by departure time. Similarly, if the
household ID is used as a key, all travelers in a household should be updated at once.

10.3.4 IndexDefrag

The IndexDefrag utility defragments and merges the data files for an index. The entries in
an index are written to a new datafile in the order that they appear in the index. The index
is modified to use the new data file. For example, if vehicles.hh.idx refers to vehicles1,
and vehicles2, then the command

 % IndexDefrag vehicles.hh.idx vehicles.new

will create a new datafile, with the entries from vehicles1 and vehicles2 that occur in
vehicles.hh.idx. The index file vehicles.hh.idx will now refer only to file vehicles.new.

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 132

10.4 Files

Table 3: Indexing library files.

Type File Name Description
Binary Files libTIO.a The TRANSIMS Interfaces library.
Source Files btree.h The Btree and BTreeEntry data structures and interface

functions.
 btree.c The Btree.h interface functions source file.
 btree_it.h The BtreeIt data structure and interface functions.
 btree_it.c The btree_it.h interface functions source file.

10.5 Usage

An index must be created for each file to be accessed by the index. Any TRANSIMS
component that requires an index file will create it if it does not already exist. Thus,
components listed under “Users” in T create the corresponding index files, as well
as the components and utilities listed under “Creators.” Some TRANSIMS components
also automatically index some of the files they create. Index files may also be created by
standalone utility programs.

able 4

Table 4: Indexes used by TRANSIMS components.

Data File Type Extension Major, Minor Sort Keys Creator(s) User(s)
Population file .hh.idx Household ID Activity Generator/

Regenerator,
Collator,
IndexPopulationFile

Activity Generator/
Regenerator,
Route Planner,
Iteration Database

Population file .hm.idx Home Location Activity Generator/
Regenerator
Collator,
IndexPopulationFile

Iteration Database

Activity file .hh.idx Household ID,
Person ID

Activity Generator,
IndexActivityFile

Route Planner,
Iteration Database

Activity file .trv.idx Person ID,
Household ID

Activity Generator,
IndexActivityFile

Traffic Microsimulator,
Iteration Database

Plan file .trv.idx Traveler ID,
Activation Time

Route Planner,
IndexPlanFile

Traffic Microsimulator,
Iteration Database

Plan file .tim.idx Activation Time,
Traveler ID

PlanFilter,
IndexPlanFile

Traffic Microsimulator

Vehicle ID, Household ID Population
Synthesizer,
IndexVehicleFile

Activity Generator/
Regenerator,
Route Planner,
Traffic Microsimulator

Vehicle file .hh.idx Household ID,
Vehicle ID

IndexVehicleFile Activity Generator/
Regenerator

Travel Time
file

.zn.idx Zone 1 Number,
Zone 2 Number

Activity Generator/
Regenerator,
IndexTravelTimeFile,
Zone Travel Time
Generator

Activity Generator/
Regenerator,
Zone Travel Time
Generator

Vehicle file .veh.idx

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 133

Data File Type Extension Major, Minor Sort Keys Creator(s) User(s)
Event Output .trv.idx Traveler ID,

Trip ID
IndexEventFile Iteration Database

Event Output .loc.idx Location ID,
Traveler ID

IndexEventFile Iteration Database

Creating an index involves reading each data record in the file, determining the values of
the fields to be used as keys, noting the byte offset for the beginning of that record, and
inserting an entry into the index (BTree). Each index is given a name derived by adding
an extension to the base data file. The extension indicates the major sort key for the index
and that the file is an index. For example, .trv.idx indicates that the file is an index whose
major sort key is traveler ID. These extensions are defined in the IO library header files.

The user has access to functions used to compare keys. The current functions compare
the primary sort key first. If these are equal, they compare the secondary sort keys. It is
possible to specify a don’t care value for the secondary sort key, which will compare
equal to any secondary sort key value.

Indexes are sorted according to the fields used for the major and minor sort keys. If a data
file must be accessed in a particular order, for example by traveler ID, it is more efficient
to build an index with that field as the major sort key than to create another data file that
has been sorted. Thus, the Framework will often expect several different indexes for each
data file.

TRANSIMS provides C library routines for creating the indexes used by the Framework,
as well as standalone utility programs. Given the name of a data file to index, these
routines first determine whether the required index files already exist, with a modification
date more recent than that of the data file. If so, nothing is done. Where possible, these
routines also create an index by examining other available indexes instead of scanning
the entire data file. For example, there are two indexes for plan files—one has traveler ID
as a major sort key and departure time as the minor key; the other has the sort keys
reversed. Thus, one index can be created from the other without looking at the original
data.

Indexes may be merged. In this case, entries appearing later in the set of indexes replace
earlier entries. None of the data in the original data files needs to be moved to merge the
indexes, yet iterating through the merged index will yield the same results as if the data
files themselves had been merged and sorted.

Similarly, removing entries from an index makes the corresponding data invisible to
users accessing the data file through the index.

After several merge, sort, and filter operations, it becomes difficult to determine the
contents of the resulting “notional” file except by using the indexing scheme. To support
users who may wish to use other data processing tools, TRANSIMS provides the ability
to defragment the data pointed to by an index. That is, it provides executables that will
create a new file on disk identical to the notional file.

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 134

10.6 Examples

#include "IO/btree.h"

 char* index_file;

 data_file = "sample1.dat";

 kActivityPerson,
 kActivityStartMin);

 entry.key1.i = 0;

 it = BTreeIt_Create (tree);

 BTreeEntry* e;

 BTreeIt* it2;

 /* Get a second iterator, pointing to the same entry */
 it2 = BTreeIt_GetIterator (tree, e);
 /* Get the entry for this iterator */

#include "IO/btree_it.h"

int main(int argc, char* argv[])
{
 char* data_file;

 BTreeEntry entry;
 BTree* tree;
 BTreeIt *it;

 index_file = "sample0.idx";

 /* Create an index file */
 tree = BTree_CreateFromFile (data_file,
 index_file,

 /* Add a second data file to the index */
 data_file = "sample2.dat";
 BTree_AddFileToIndex (tree, data_file);

 /* Delete an entry */

 entry.key2.f = 0.0;
 entry.key_type = K_IF;
 BTree_DeleteEntry (tree, &entry);

 /* Use an iterator to examine each entry */

 BTreeIt_Reset (it);
 while (BTreeIt_MoreData (it))
 {

 BTreeEntry* e2;

 /* Get the entry for this iterator */
 e = BTreeIt_Get (it);

 e2 = BTreeIt_Get (it2);
 /* Verify that the entries are the same (they should be) */

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 135

 if (!BTree_Compare_Equal(e, e2) || !BTreeIt_Compare_Equal
(it, it2))
 {

 printf("Entries differ\n");

 /* Clean up the second iterator */

 if (!BTree_Compare_Equal(e, e2))

 if (!BTreeIt_Compare_Equal (it, it2))
 printf("Iterators differ\n ");
 }

 BTreeIt_Destroy (it2);

 /* Advance to the next entry */
 BTreeIt_Advance (it);
 }
 BTreeIt_Destroy (it);

 BTree_Close (tree);
 free(tree);
 return 0;
}

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 136

11. CONFIGURATION
This section describes the format of configuration files. These files contain the
parameters used by the various TRANSIMS software modules.

• A blank line.

Functions are available for reading and writing records of a configuration file.

11.1.2 ConfigWrite

record – the pointer to the TConfigRecord structure from which the
record is written.

Configuration files are text files that contain lines of the following types:

• A key followed (optionally) by a value and (optionally) by a comment starting with
the pound (#) symbol. The key and the value must be separated by space and/or tab
characters.

• A comment line staring with the pound symbol (#).

11.1 Interface Functions

11.1.1 ConfigRead

Signature int ConfigRead (FILE* file, TConfigRecord* record)

Description Reads a record from a configuration file.

Argument file – the FILE* pointer for the configuration file.
record – the pointer to the TConfigRecord structure into which the
record is read.

Return Value Nonzero if the record was successfully read, or zero if not.

Signature int ConfigWrite (FILE* file,

const TConfigRecord* record)

Description Writes a record to a configuration file.

Argument file – the FILE* pointer for the configuration file.

Return Value Nonzero if the record was successfully written, or zero if not.

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 137

11.2 Data Structures

11.2.1 TConfigRecord

Structure for configuration file records.

typedef struct

/** The value, if the record has one. **/
INT8 fValue[256];

{

/** The key, if the record has one. **/
INT8 fKey[64];

/** The comment, if the record has one. **/
INT8 fComment[512];

} TConfigRecord;

11.3 Utility Programs

11.3.1 SetEnv

The SetEnv program takes the keys in a configuration file and converts them into UNIX
shell environment variables set to the values corresponding to the keys. Its first argument
is the name of the UNIX shell, and its second argument is the name of the configuration
file; it does not recurse nested configuration files. It is typically used as follows:

where default.config is the default configuration file identified in the configuration
file my-run.config.

eval `SetEnv csh default.config`
 eval `SetEnv csh my-run.config`

11.4 Files

Table 5: Configuration library files.

Type File Name Description
Binary Files libTIO.a The TRANSIMS Interfaces library.
Utilities SetEnv The environment variable setting utilities.
Source Files configio.h The configuration file data structures and interface functions.
 configio.c The configuration file interface functions source file.

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 138

11.5 Configuration File Keys

The configuration file key CONFIG_DEFAULT_FILE specifies the name of a
configuration file whose keys and values are to be used in cases where a key is not set in
the current configuration file.

11.6 Examples

Figure 1 and Figure 2 give examples of typical configuration and default configuration
files, respectively. Note that when keys are duplicated in these files, the value in the non-
default file takes precedence.

Figure 1: Example configuration file.

CONFIG_DEFAULT_FILE /home/transims/allstr-run/default.config

NET_PROCESS_LINK_TABLE Process_Link.minimal.tbl

ROUTER_MAX_DEGREE 15

CA_BIN /home/projects/transims/config/integration/bin/ARCH.PVM.SUN4SOL2/CA
CA_SIM_STEPS 7200
CA_MASTER_MESSAGE_LEVEL 1

PAR_COMMUNICATION PVM
PAR_SLAVES 1

Figure 2: Example default configuration file.
##################### GLOBAL PARAMETERS #####################

The width of a lane in meters
float
GBL_LANE_WIDTH 3.5

The length of a cell in meters
float
GBL_CELL_LENGTH 7.5

##################### NETWORK PARAMETERS ####################

NET_LANE_USE_TABLE Lane_Use.tbl

NET_PHASING_PLAN_TABLE Phasing_Plan.tbl

NET_DIRECTORY /home/transims/allstr-run/network/

NET_NODE_TABLE Node.tbl
NET_LINK_TABLE Link.tbl
NET_POCKET_LANE_TABLE Pocket_Lane.tbl

NET_SPEED_TABLE Speed.tbl
NET_LANE_CONNECTIVITY_TABLE Lane_Connectivity.tbl
NET_TURN_PROHIBITION_TABLE Turn_Prohibition.tbl
NET_UNSIGNALIZED_NODE_TABLE Unsignalized_Node.tbl
NET_SIGNALIZED_NODE_TABLE Signalized_Node.tbl

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 139

NET_TIMING_PLAN_TABLE Timing_Plan.tbl
NET_SIGNAL_COORDINATOR_TABLE Signal_Coordinator.tbl
NET_DETECTOR_TABLE Detector.tbl
NET_BARRIER_TABLE Barrier.tbl
NET_PARKING_TABLE Parking.tbl
NET_TRANSIT_STOP_TABLE Transit_Stop.tbl
NET_ACTIVITY_LOCATION_TABLE Activity_Location.tbl
NET_PROCESS_LINK_TABLE Process_Link.tbl
NET_STUDY_AREA_LINKS_TABLE Study_Area_Link.tbl

##################### SYNTHETIC POPULATION PARAMETERS ####################

POP_NUMBER_HH 1000
POP_BASELINE_FILE /home/transims/allstr-run/output/allstr.basepop

ACT_ACCESS_HEADER ACCESS

OUT_SNAPSHOT_EASTING_MAX_1 1000000
OUT_SNAPSHOT_NORTHING_MIN_1 1
OUT_SNAPSHOT_NORTHING_MAX_1 1000000

OUT_EVENT_NAME_1 allstr.event

OUT_EVENT_EASTING_MAX_1 1000000

OUT_EVENT_FILTER_1

POP_LOCATED_FILE /home/transims/allstr-run/output/allstr.locpop
POP_STARTING_VEHICLE_ID 100000
POP_STARTING_HH_ID 1
POP_STARTING_PERSON_ID 101

##################### ACTIVITY GENERATOR PARAMETERS ####################

ACT_FULL_OUTPUT /home/transims/allstr-run/output/allstr.activities
ACT_PARTIAL_OUTPUT /home/transims/allstr-run/output/allstr.partact
ACT_FEEDBACK_FILE /home/transims/allstr-run/output/allstr.actfeed
ACT_WORK_LOC_ALPHA 1
ACT_WORK_LOC_BETA 1
ACT_WORK_LOC_GAMMA 1
ACT_TIME_ALPHA 1
ACT_TIME_BETA 1
ACT_MODE_ALPHA 1
ACT_MODE_BETA 1
ACT_WORK_LOCATION_OPTION 1
ACT_MODE_CHOICE_OPTION 4
ACT_HOME_HEADER HOME
ACT_WORK_HEADER WORK

##################### OUTPUT PARAMETERS #####################

OUT_DIRECTORY /home/transims/allstr-run/output

OUT_SNAPSHOT_NAME_1 allstr.snapshot
OUT_SNAPSHOT_BEGIN_TIME_1 0
OUT_SNAPSHOT_END_TIME_1 86400
OUT_SNAPSHOT_TIME_STEP_1 1
OUT_SNAPSHOT_EASTING_MIN_1 1

OUT_SNAPSHOT_NODES_1 /home/transims/allstr-run/data/allstr.nodes
OUT_SNAPSHOT_LINKS_1 /home/transims/allstr-run/data/allstr.links
OUT_SNAPSHOT_SUPPRESS_1
OUT_SNAPSHOT_FILTER_1

OUT_EVENT_BEGIN_TIME_1 0
OUT_EVENT_END_TIME_1 86400
OUT_EVENT_TIME_STEP_1 1
OUT_EVENT_EASTING_MIN_1 1

OUT_EVENT_NORTHING_MIN_1 1
OUT_EVENT_NORTHING_MAX_1 1000000
OUT_EVENT_NODES_1 /home/transims/allstr-run/data/allstr.nodes
OUT_EVENT_LINKS_1 /home/transims/allstr-run/data/allstr.links
OUT_EVENT_SUPPRESS_1

OUT_SUMMARY_NAME_1 allstr.summary

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 140

OUT_SUMMARY_BEGIN_TIME_1 0
OUT_SUMMARY_END_TIME_1 86400
OUT_SUMMARY_TIME_STEP_1 900
OUT_SUMMARY_SAMPLE_TIME_1 60
OUT_SUMMARY_BOX_LENGTH_1 150
OUT_SUMMARY_EASTING_MIN_1 1
OUT_SUMMARY_EASTING_MAX_1 1000000
OUT_SUMMARY_NORTHING_MIN_1 1
OUT_SUMMARY_NORTHING_MAX_1 1000000
OUT_SUMMARY_NODES_1 /home/transims/allstr-run/data/allstr.nodes
OUT_SUMMARY_LINKS_1 /home/transims/allstr-run/data/allstr.links
OUT_SUMMARY_SUPPRESS_1
OUT_SUMMARY_FILTER_1

##################### SIMULATION PARAMETERS #################

see IO/log.h for possible levels
CA_SLAVE_MESSAGE_LEVEL 0
CA_MASTER_MESSAGE_LEVEL 0

name of executable (used by Msim.pl)
CA_BIN CA

the max number of occupants of a bus
int > 1

CA_BUS_MAXIMUM_ACCELERATION 0.1

If nonzero, no attempt will be made to read in transit vehicles

the probability that a vehicle with speed >= 1 will decelerate by 1

int > 1

CA_BUS_CAPACITY 50

the number of cells a bus occupies in a jam
float > 0.0
CA_BUS_LENGTH 2.0

the acceleration of a car, bus, etc.
(in cells per timestep per timestep)
float > 0.0
CA_MAXIMUM_ACCELERATION 0.4

the maximum speed of a car, bus, etc.
(in cells per timestep)
float > 0.0
CA_MAXIMUM_SPEED 4.5
CA_BUS_MAXIMUM_SPEED 2.5

and transit passengers will not be simulated.
int(?)
CA_NO_TRANSIT 1

Some time after a vehicle becomes off plan, it will exit the simulation.

(also an increment added to the speed limit on a link)
in the discrete version (not compiled with -DCONTINUOUS)
float > 0 and < 1
CA_DECELERATION_PROBABILITY 0.2

use to compute the number of cells that must be vacant in an acceptable gap
(acceptable gap is speed of oncoming vehicle * Velocity Factor)
float (> 1.0 ?)
CA_GAP_VELOCITY_FACTOR 3.0

Probability of proceeding when interfering gap is not acceptable
in cases of links with competing stop/yield signs
float > 0 and < 1
CA_IGNORE_GAP_PROBABILITY 0.66

The number of vehicles which can be buffered in each
of an intersection’s queues (One queue for each lane of each incoming link)

CA_INTERSECTION_CAPACITY 10

Vehicles take at least this many timesteps to traverse an intersection

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 141

int >= 0
CA_INTERSECTION_WAIT_TIME 1

Can’t change lanes if random variable drawn on each timestep for each vehicle

CA_BROADCAST_ACC_CPN_MAP 0

unsigned short
CA_RANDOM_SEED1 1
CA_RANDOM_SEED2 2

int
CA_USE_NETWORK_CACHE 0

through the doors or whatever. They have nothing to do with the

float >= 0.0

is less than this
float > 0 and < 1
CA_LANE_CHANGE_PROBABILITY 0.99

number of cells ahead to look for deciding which lane is best upon entering a link
int >= 0
CA_LOOK_AHEAD_CELLS 35

If vehicle has not moved for this many timesteps,
it becomes off-plan and chooses a different destination link, if possible.
int >= 0
CA_MAX_WAITING_SECONDS 600

The exit time is the minimum of the expected arrival time at the destination
and the current time + OFF_PLAN_EXIT_TIME
int >= 0
CA_OFF_PLAN_EXIT_TIME 1

Determines, in a complicated way, whether lane changes for the
sake of following a plan need to be considered
int >= 0
CA_PLAN_FOLLOWING_CELLS 70

specify start time for simulation
int
CA_SIM_START_HOUR 0
CA_SIM_START_MINUTE 0
CA_SIM_START_SECOND 0

number of timesteps to simulate
int >= 0
CA_SIM_STEPS 3600

send map of locations of all accessories to all slaves

migrate travelers by broadcasting them
CA_BROADCAST_TRAVELERS 1

number of time-steps to be executed before slaves synchronize with master
CA_SEQUENCE_LENGTH 1

Initialize the random seed
seed48 is called with a pointer to the first element of an array
of these 3 unsigned shorts

CA_RANDOM_SEED3 3

Use the cached binary representation of the network database
in the file specified by CA_NETWORK_FILE

string
CA_NETWORK_FILE

The following delays model just the time it takes to walk up the steps or

time spent waiting in the queue.

The mean number of seconds it takes a traveler to board a transit vehicle.
float >= 0.0
CA_ENTER_TRANSIT_DELAY 1.6

The mean number of seconds it takes to disembark.

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 142

CA_EXIT_TRANSIT_DELAY 1.8

The number of seconds after a vehicle reaches the stop before
passengers can start boarding
CA_TRANSIT_INITIAL_WAIT 5

CA_VEHICLE_FILE /home/transims/allstr-run/output/allstr.vehicles

CA_USE_PARTITIONED_ROUTE_FILES 0

CA_PARALLEL_IO_TEST_INTERVAL 30

string
TRANSIT_ROUTE_FILE /home/transims/allstr-run/data/allstr.routes

TRANSIT_SCHEDULE_FILE /home/transims/allstr-run/data/allstr.schedules

##################### LOGGING PARAMETERS ####################

Name of a file containing TRANSIMS format vehicle information
(locations, type, etc.)

CA_LATE_BOUNDARY_RECEPTION 1
CA_PARALLEL_LOG 0

CA_PARALLEL_IO_TEST_MODE 0

CA_OUTPUT_BUFFER_COUNT 32

CA_RTM_SAMPLE_INTERVAL 0

##################### TRANSIT PARAMETERS ####################

Name of a file containing TRANSIMS format transit route information
(list of stops for each route)

Name of a file containing TRANSIMS format transit schedule information
(list of arrival time for each vehicle at each stop)
string

##################### PLAN PARAMETERS #######################

Name of a file containing TRANSIMS format legs
string
PLAN_FILE /home/transims/allstr-run/output/allstr.plans

##################### ROUTER PARAMETERS #####################

ROUTER_OUTPUT_PLAN_FILE /home/transims/allstr-run/output/allstr.plans
ROUTER_ACTIVITY_FILE /home/transims/allstr-run/output/allstr.activities
ROUTER_VEHICLE_FILE /home/transims/allstr-run/output/allstr.vehicles
ROUTER_MODE_MAP_FILE /home/transims/allstr-run/data/allstr.modes

ROUTER_MAXNFASIZE 5
ROUTER_MAX_DEGREE 15
ROUTER_INTERNAL_PLAN_SIZE 400
ROUTER_VERBOSE 2

If length < corr_thresh * dist, adjust the length
float
ROUTER_CORR 0.0

??
float
ROUTER_OVERDO 3.0

Backdating time of travel information ??
int
ROUTER_ZERO_BACKD 0

LOG_LOG_CONFIG 0
LOG_LOAD_NETWORK 1
LOG_PARTITIONING 1
LOG_DISTRIBUTION 1

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 143

LOG_RUNTIMEMONITOR 0
LOG_CONTROL 0
LOG_TIMING 1
LOG_BOUNDARIES 0
LOG_ROUTING 1
LOG_ROUTING_DETAIL 1
LOG_TIMESTEP 1
LOG_TIMESTEP_DETAIL 1

LOG_EMISSIONS 1

VIS_SINGLE_BUFFERED 0

Name of a file containing batch commands (unused)

The length of a box in meters
float
VIS_BOX_LENGTH 150.0

PAR_PVM_WAIT_FOR_DEAMON 20

PAR_MPI_ARCH solaris

PAR_PARTITION_FILE /tmp/partition
PAR_SAVE_PARTITION 0

int

The first line sets a node weight

See above for RTM_FEEDBACK_FILE

LOG_PARALLEL 0
LOG_VEHICLES 1
LOG_MIGRATION 1
LOG_MIGRATION_DETAIL 1
LOG_TRANSIT 1

LOG_IO_DETAIL 0

##################### VISUALIZER PARAMETERS #################

int, will be single buffered if non-zero

string
VIS_BATCH_FILE

##################### PARTITIONING PARAMETERS ###############

PAR_PVM_ROOT /sw/Cvol/pvm3
PAR_PVM_ARCH SUN4SOL2

PAR_MPI_ROOT /sw/Cvol/mpich

PAR_MPI_DEVICE ch_p4

PAR_MIN_CELLS_TO_SPLIT 10
PAR_SLAVES 2

if 1, use orthogonal bisection to distribute the network
otherwise, use the METIS graph partitioning library
int
PAR_USE_METIS_PARTITION 1
PAR_USE_OB_PARTITION 0

if 0 use (number of lanes) for edge weight, (length * number of lanes) for edge penalty
and 0 for node weights in the partitioning algorithm
otherwise, use the file named in RTM_FEEDBACK_FILE and RTM_PENALTY_FACTOR.

PAR_USE_RTM_FEEDBACK 0

Filename for edge and node weights for partitioning
File format is lines of the form:
0 ID Weight
1 ID Weight Penalty

the second line sets an edge weight: if penalty is -1, use current value *
RTM_PENALTY_FACTOR
otherwise use Penalty * RTM_PENALTY_FACTOR
string
PAR_RTM_FEEDBACK_FILE /tmp/rtm

float > 0.0
PAR_RTM_PENALTY_FACTOR 100.0

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 144

PAR_REPORT_OUTGOING_LINK_TIME_ONLY 1

##################### SELECTOR PARAMETERS ###################

reassigning activities

SEL_REMODE_FRAC 0.1

SEL_REMODE_FILE

tab-width:4

Only travelers whose (actual - expected) / expected
is greater than this will be affected by any operations
float > 0
SEL_FRUSTRATION_THRESH 1.5

Fraction of travelers to select for
just rerouting

choosing a new mode preference
changing the time of activities
float, >= 0 and <= 1
SEL_REROUTE_FRAC 0.1
SEL_REASSIGN_FRAC 0.1

SEL_RETIME_FRAC 0.1

Name of files in which to place traveler ids
selected for each of the possible changes
string
SEL_REROUTE_FILE

SEL_RETIME_FILE
SEL_REASSIGN_FILE

===
Local Variables:

End:
===

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 145

12. LOGGING
The TRANSIMS logging interface is to be used for the logging output of all applications
that will be part of the TRANSIMS suite of software modules and will be integrated into
the development environment. Using a single interface allows the standardization of
logging messages.

12.1 Interface Functions

Each logging message is associated with a module passed in the parameter
theSubSystem. There are predefined modules for most subsystems in TRANSIMS (see
IO/log.h for a list.)

There are four different message levels that are passed in the parameter
theMessageLevel:

1) MSG_PRINT – a normal informative message. It does NOT describe a warning or an
error.

2) MSG_WARNING – a warning that may need user attention, but is most likely not to
corrupt the application results.

3) MSG_SEVERE_WARNING – a warning that does not require the user to shut down the
application but will most likely result in corrupted output.

4) MSG_ERROR – an actual error message that results in immediate termination of the
program.

The parameter Format contains the actual message. It is interpreted as a C-style
printf(1) format string that permits the passing of additional parameters after the
format string. There is no need to terminate the format string with a newline character,
since that will be automatically added.

Notes:

1) Do not try to bypass the interface because this may result in messages getting lost.

2) Refrain from using the strings ERROR or WARNING (or any other pattern listed in the
DEFINES-Reserved String Pattern section of the log.h file) in your messages. The
interface will add appropriate strings to your messages so that they can be identified.

3) Choose the message level with care since “harmless” levels such as MSG_PRINT or
MSG_WARNING may be deactivated when the application is run in production mode.
Really important messages should be of type MSG_SEVERE_WARNING or
MSG_ERROR.

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 146

4) Do not make any assumption about where the logging output will end up. The default
will be standard output, but it may also be redirected to a file.

12.1.1 cMessage

Signature void cMessage(enum TSubsystem theSubSystem,
enum TMessageLevel theMessageLevel,
const char* Format, . . .)

Description

Argument

12.2 Files

Writes a message using the logging system. See above for more detailed
description.

theSubSystem – an enumeration for the subsystem that produces the
message.
theMessageLevel – one of four levels described above.
Format – a string describing the message format.
. . . – any additional parameters that may be needed.

Return Value None.

Table 6: Logging library files.

Type File Name Description
Binary Files libTIO.a The TRANSIMS Interfaces library.
Source Files log.c The source file the logging functions.
 log.h The header file for logging functions.

12.3 Examples

cMessage (SUB_CA, MSG_WARNING, “More vehicle (%d) than expected (%d)”,
 NrOfVehicle, NrOfExpectedVehicles;

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 147

Volume Five: Index

Binary files, 36, 40, 132, 137, 146

btree.c, 132

BTree_ClearFilename, 121
BTree_Close, 119
BTree_Create, 118

BTree_GetFilename, 120

BTree_Open, 119

BTree_Validate, 123

BTreeIt_Compare_Equal, 125

BTreeIt_Destroy, 125

BTreeIt_Reset, 124
BTreeNode, 127
cMessage, 146

Configuration examples, 138

CreateDoublePopulationIndex, 5

DefragmentPlanFiles, 45

getLegStartAccessoryId, 44

getNextTransitScheduleData, 85

getSurveyWeightFromData, 14

getTravelTimeEntryFromFile, 15
getTreeEntryFromData, 17

IndexActivityFile, 130

Activities data structures, 21
Activities interface functions, 9
ActivityData, 21
ActivityTimeSpec, 21

BTree, 125, 127

btree.h, 132
BTree_AddFilename, 120
BTree_AddFileToIndex, 120

BTree_CreateFromFile, 119
BTree_DeleteEntry, 123
BTree_FindEntry, 122
BTree_GetDataLine, 122
BTree_GetDataPointer, 122

BTree_GetFileNumber, 121
BTree_Insert, 120
btree_it.c, 132
btree_it.h, 132

BTree_RenumberFiles, 121

BTreeEntry, 126
BtreeIt, 128
BTreeIt_Advance, 124

BTreeIt_Create, 123

BTreeIt_Get, 124
BTreeIt_GetIterator, 125
BTreeIt_MoreData, 124

configio.c, 137
configio.h, 137
ConfigRead, 136
Configuration data structures, 137

Configuration files, 137
Configuration interface functions, 136
Configuration utility programs, 137
ConfigWrite, 136

CreateActivityIndex, 13

CreateEventFileIndex, 74
CreateFeedbackIndex, 20
CreatePopIndexFromFile, 6
CreatePopulationIndex, 2
CreateTravelTimesIndex, 20

Framework, 118
GetCurrentData, 52
getCurrentLeg, 43
getLegDepartTime, 44
getLegLegId, 45
getLegMode, 45

getLegStartAccessoryType, 44
getLegTravelerId, 43
getLegTripId, 44
getModeEntryFromFile, 20
getModeWeightEntryFromData, 19
getModeWeightEntryFromFile, 19
getNextActivity, 9
getNextHousehold, 10
getNextLeg, 41
getNextSyntheticHH, 1
getNextTimeTableEntry, 12
getNextTransitRouteData, 85

getNextTransitZoneData, 86
getNextTripTableEntry, 12
getNextVehicle, 32
getSurveyActivity, 14

getSurveyWeightFromFile, 14
getSyntheticHHFromString, 3
getSyntheticHouseholdFromIndex, 4
getSyntheticPopDemographicHeaders, 4
getTravelTimeEntryFromData, 15

getTreeEntryFromFile, 16
getTripTableDimensions, 11
getZoneEntryFromData, 18
getZoneEntryFromFile, 18
getZoneHeaderFromFile, 17

IndexDefrag, 131

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 148

IndexFilenames, 129
Indexing data structures, 126
Indexing examples, 134
Indexing files, 132

Indexing usage, 132

IndexVehFile, 130

ITDB_Create, 49
ITDB_CreateV, 50

ITDB_It, 60

ITDB_ItGetString, 57

Iteration Database interface functions, 49

moreModeEntries, 19
moreModeWeightEntries, 18

moreTravelTimes, 15

NetReadActivityLocationHeader, 90
NetReadBarrier, 94

NetReadNode, 90

NetReadSignalCoordinator, 100
NetReadSignalizedNode, 97
NetReadSpeed, 91

NetReadUnsignalizedNode, 97

NetWriteBarrier, 94
NetWriteDetector, 100
NetWriteHeader, 89

NetWriteParking, 94

Indexing interface functions, 118

Indexing utility programs, 129
IndexPlanFile, 130, 131
IndexPopulationFile, 130
IndexTravelFile, 130

ITDB, 59
ITDB_Add, 51
ITDB_AddV, 52
ITDB_ArrayToString, 58
ITDB_Close, 50

ITDB_CurrentIteration, 51
ITDB_FieldNameToNumber, 55
ITDB_FieldNumberToName, 55
ITDB_GetCurrentField, 54
ITDB_GetCurrentString, 52
ITDB_GetData, 53
ITDB_GetField, 54
ITDB_GetFirstField, 54
ITDB_GetLastField, 55
ITDB_GetString, 53
ITDB_GetTotalString, 53

ITDB_ItAdvance, 57
ITDB_ItCreate, 56
ITDB_ItCreateRecord, 56
ITDB_ItDestroy, 56
ITDB_ItGetData, 57

ITDB_ItMoreData, 57
ITDB_ItReset, 56
ITDB_NewIteration, 51
ITDB_Open, 50
ITDB_StringToArray, 57
Iteration Database data structures, 59

Key, 126
LegData, 45, 47
libTIO.a, 36, 40, 132, 137, 146
log.c, 146
log.h, 146
Logging examples, 146
Logging files, 146
Logging interface functions, 145

MergeIndices, 130, 131
moreActivities, 9
moreLegs, 41

moreSurveyActivities, 13
moreSyntheticHH, 1
moreTimeTableEntries, 12
moreTransitData, 84

moreTreeEntries, 16
moreTripTableEntries, 11
moreVehicles, 31
moreZoneEntries, 17
NetReadActivityLocation, 101

NetReadDetector, 99
NetReadHeader, 89
NetReadLaneConnectivity, 95
NetReadLaneUse, 93
NetReadLink, 91

NetReadParking, 93
NetReadPhasingPlan, 98
NetReadPocket, 92
NetReadProcessLink, 101

NetReadStudyAreaLink, 102
NetReadTimingPlan, 99
NetReadTransitStop, 95
NetReadTurnProhibition, 96

NetSkipHeader, 89
Network data structures, 103
Network interface functions, 89
NetWriteActivityLocation, 101

NetWriteLaneConnectivity, 96
NetWriteLaneUse, 93
NetWriteLink, 91
NetWriteNode, 90

NetWritePhasingPlan, 98
NetWritePocket, 92
NetWriteProcessLink, 102
NetWriteSignalCoordinator, 100

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 149

NetWriteSignalizedNode, 98
NetWriteSpeed, 92
NetWriteStudyAreaLink, 102
NetWriteTimingPlan, 99
NetWriteTransitStop, 95

OutHeaderHasField, 62

OutReadIntersectionEvolution, 67

OutReadLinkSpaceSummary, 71
OutReadLinkSpaceSummaryHeader, 70
OutReadLinkSpecification, 63
OutReadLinkTimeSummary, 70

OutReadNodeSpecification, 62

OutReadTrafficControlEvolutionHeader, 68

OutReadVehicleEvolutionHeader, 65
OutSkipHeader, 61
OutWriteHeader, 61

OutWriteLinkEnergySummaryHeader, 73

OutWriteLinkSpaceSummaryHeader, 71

OutWriteLinkVelocitySummary, 73
OutWriteLinkVelocitySummaryHeader, 72
OutWriteNodeSpecification, 62

OutWriteTravelerEventHeader, 64

OutWriteVehicleEvolutionHeader, 65

readLegRecordFromString, 42
readSurveyActivityHeader, 13

Simulation Output interface functions, 61

TConfigRecord, 136, 137
TFeedbackEntry, 27

TNetHeader, 103

TNetPhasingPlanRecord, 112
TNetPocketRecord, 106

TNetStudyAreaLinkRecord, 117

TOutIntersectionEvolutionRecord, 78
TOutLinkEnergySummaryRecord, 82

TOutTrafficControlEvolutionRecord, 79

NetWriteTurnProhibition, 96
NetWriteUnsignalizedNode, 97

OutReadHeader, 61

OutReadIntersectionEvolutionHeader, 66
OutReadLinkEnergySummary, 74
OutReadLinkEnergySummaryHeader, 73

OutReadLinkTimeSummaryHeader, 69
OutReadLinkVelocitySummary, 72
OutReadLinkVelocitySummaryHeader, 72

OutReadTrafficControlEvolution, 68

OutReadTravelerEvent, 64
OutReadTravelerEventFromString, 64
OutReadTravelerEventHeader, 63
OutReadVehicleEvolution, 66

OutWriteIntersectionEvolution, 67
OutWriteIntersectionEvolutionHeader, 67
OutWriteLinkEnergySummary, 74

OutWriteLinkSpaceSummary, 71

OutWriteLinkSpecification, 63
OutWriteLinkTimeSummary, 70
OutWriteLinkTimeSummaryHeader, 69

OutWriteTrafficControlEvolution, 69
OutWriteTrafficControlEvolutionHeader, 68
OutWriteTravelerEvent, 65

OutWriteVehicleEvolution, 66

parseBufferedLegRecord, 43
Plan data structures, 47
Plan interface functions, 41

readLegRecord, 42

ReverseIndex, 46
Route Planner, 41, 131
SetEnv, 137
Simulation Output data structures, 75

Source files, 36, 40, 132, 137, 146
Synthetic population data structures, 7
Synthetic population interface functions, 1
SyntheticHHData, 7
SyntheticPersonData, 7

TModeEntry, 30
TModeWeightEntry, 29
TNetActivityLocationRecord, 115
TNetBarrierRecord, 108
TNetDetectorRecord, 114

TNetLaneConnectivityRecord, 110
TNetLaneUseRecord, 107
TNetLinkRecord, 103
TNetNodeRecord, 103
TNetParkingRecord, 107

TNetProcessLinkRecord, 116
TNetSignalCoordinatorRecord, 115
TNetSignalizedNodeRecord, 111
TNetSpeedRecord, 105

TNetTimingPlanRecord, 113
TNetTransitStopRecord, 109
TNetTurnProhibitionRecord, 110
TNetUnsignalizedNodeRecord, 111
TOutHeader, 75

TOutLinkSpaceSummaryRecord, 81
TOutLinkSpecificationRecord, 75
TOutLinkTimeSummaryRecord, 69, 80
TOutLinkVelocitySummaryRecord, 81
TOutNodeSpecificationRecord, 75

TOutTravelerEventRecord, 75
TOutVehicleEvolutionRecord, 77
Traffic Microsimulator, 41, 131
TRANSIMS Interfaces library, 36, 40, 132,

137, 146

TRANSIMS 3.0 Los Alamos National Laboratory

Volume Five—Software 01 March 2002 150

Transit data structures, 87
Transit interface functions, 84
TransitRouteData, 87

TTimeTableEntry, 24

TZoneEntry, 28

Vehicle data structures, 34

Vehicle Prototypes interface functions, 37

VehReadHeader, 37
VehReadPrototype, 38
VehSkipHeader, 38

writeHousehold, 11

writeTransitScheduleData, 86

writeTravelTimeEntry, 16

TransitScheduleData, 88
TransitStopData, 87
TransitZoneData, 88
TSurveyActivityEntry, 24

TTravelTimeEntry, 15, 26
TTreeEntry, 27
TTripTableEntry, 24
TVehDataHeader, 34, 35
TVehHeader, 39
TVehPrototypeData, 39

TZoneHeader, 28
VehDataReadHeader, 32
VehDataSkipHeader, 33
VehDataWriteDefaultHeader, 33
VehDataWriteHeader, 33

Vehicle interface functions, 31
Vehicle Prototypes data structures, 39

VehicleData, 34
vehio.c, 36
vehio.h, 36
vehprotoio.c, 40
vehprotoio.h, 40

VehWriteDefaultHeader, 37
VehWriteHeader, 37
VehWritePrototype, 38
writeActivity, 10

writeLeg, 42
writeLegRecord, 43
writeSyntheticHH, 3
writeSyntheticPopHeader, 2
writeTransitRouteData, 85

writeTransitZoneData, 86

writeVehicle, 32

TRANSIMS 3.0 Los Alamos National Laboratory

	Synthetic Population
	Interface Functions
	moreSyntheticHH
	getNextSyntheticHH
	writeSyntheticPopHeader
	CreatePopulationIndex
	getSyntheticHHFromString
	writeSyntheticHH
	getSyntheticHouseholdFromIndex
	getSyntheticPopDemographicHeaders
	CreateDoublePopulationIndex
	CreatePopIndexFromFile

	Data Structures
	SyntheticPersonData
	SyntheticHHData

	Activities
	Interface Functions
	moreActivities
	getNextActivity
	getNextHousehold
	writeActivity
	writeHousehold
	moreTripTableEntries
	getTripTableDimensions
	getNextTripTableEntry
	moreTimeTableEntries
	getNextTimeTableEntry
	CreateActivityIndex
	moreSurveyActivities
	readSurveyActivityHeader
	getSurveyActivity
	getSurveyWeightFromFile
	getSurveyWeightFromData
	moreTravelTimes
	getTravelTimeEntryFromFile
	getTravelTimeEntryFromData
	writeTravelTimeEntry
	moreTreeEntries
	getTreeEntryFromFile
	getTreeEntryFromData
	moreZoneEntries
	getZoneHeaderFromFile
	getZoneEntryFromFile
	getZoneEntryFromData
	moreModeWeightEntries
	getModeWeightEntryFromData
	getModeWeightEntryFromFile
	moreModeEntries
	getModeEntryFromFile
	CreateFeedbackIndex
	CreateTravelTimesIndex

	Data Structures
	ActivityTimeSpec
	ActivityData
	TTripTableEntry
	TTimeTableEntry
	TSurveyActivityEntry
	TTravelTimeEntry
	TFeedbackEntry
	TTreeEntry
	TZoneHeader
	TZoneEntry
	TModeWeightEntry
	TModeEntry

	Vehicle
	Interface Functions
	moreVehicles
	getNextVehicle
	writeVehicle
	VehDataReadHeader
	VehDataWriteHeader
	VehDataWriteDefaultHeader
	VehDataSkipHeader

	Data Structures
	TVehDataHeader
	VehicleData
	TVehDataHeader

	Files

	Vehicle Prototypes
	Interface Functions
	VehReadHeader
	VehWriteHeader
	VehWriteDefaultHeader
	VehSkipHeader
	VehReadPrototype
	VehWritePrototype

	Data Structures
	TVehHeader
	TVehPrototypeData

	Files

	Plan
	Interface Functions
	moreLegs
	getNextLeg
	writeLeg
	readLegRecordFromString
	readLegRecord
	writeLegRecord
	parseBufferedLegRecord
	getCurrentLeg
	getLegTravelerId
	getLegDepartTime
	getLegStartAccessoryId
	getLegStartAccessoryType
	getLegTripId
	getLegLegId
	getLegMode
	DefragmentPlanFiles
	ReverseIndex

	Data Structures
	LegData

	Iteration Database
	Interface Functions
	ITDB_Create
	ITDB_CreateV
	ITDB_Open
	ITDB_Close
	ITDB_CurrentIteration
	ITDB_NewIteration
	ITDB_Add
	ITDB_AddV
	ITDB_GetCurrentString
	GetCurrentData
	ITDB_GetString
	ITDB_GetData
	ITDB_GetTotalString
	ITDB_GetCurrentField
	ITDB_GetField
	ITDB_GetFirstField
	ITDB_GetLastField
	ITDB_FieldNameToNumber
	ITDB_FieldNumberToName
	ITDB_ItCreate
	ITDB_ItCreateRecord
	ITDB_ItDestroy
	ITDB_ItReset
	ITDB_ItAdvance
	ITDB_ItMoreData
	ITDB_ItGetString
	ITDB_ItGetData
	ITDB_StringToArray
	ITDB_ArrayToString

	Data Structures
	ITDB
	ITDB_It

	Simulation Output
	Interface Functions
	OutReadHeader
	OutWriteHeader
	OutSkipHeader
	OutHeaderHasField
	OutReadNodeSpecification
	OutWriteNodeSpecification
	OutReadLinkSpecification
	OutWriteLinkSpecification
	OutReadTravelerEventHeader
	OutWriteTravelerEventHeader
	OutReadTravelerEvent
	OutReadTravelerEventFromString
	OutWriteTravelerEvent
	OutReadVehicleEvolutionHeader
	OutWriteVehicleEvolutionHeader
	OutReadVehicleEvolution
	OutWriteVehicleEvolution
	OutReadIntersectionEvolutionHeader
	OutWriteIntersectionEvolutionHeader
	OutReadIntersectionEvolution
	OutWriteIntersectionEvolution
	OutReadTrafficControlEvolutionHeader
	OutWriteTrafficControlEvolutionHeader
	OutReadTrafficControlEvolution
	OutWriteTrafficControlEvolution
	OutReadLinkTimeSummaryHeader
	OutWriteLinkTimeSummaryHeader
	OutReadLinkTimeSummary
	OutWriteLinkTimeSummary
	OutReadLinkSpaceSummaryHeader
	OutWriteLinkSpaceSummaryHeader
	OutReadLinkSpaceSummary
	OutWriteLinkSpaceSummary
	OutReadLinkVelocitySummaryHeader
	OutWriteLinkVelocitySummaryHeader
	OutReadLinkVelocitySummary
	OutWriteLinkVelocitySummary
	OutReadLinkEnergySummaryHeader
	OutWriteLinkEnergySummaryHeader
	OutReadLinkEnergySummary
	OutWriteLinkEnergySummary
	CreateEventFileIndex

	Data Structures
	TOutHeader
	TOutNodeSpecificationRecord
	TOutLinkSpecificationRecord
	TOutTravelerEventRecord
	TOutVehicleEvolutionRecord
	TOutIntersectionEvolutionRecord
	TOutTrafficControlEvolutionRecord
	TOutLinkTimeSummaryRecord
	TOutLinkSpaceSummaryRecord
	TOutLinkVelocitySummaryRecord
	TOutLinkEnergySummaryRecord

	Transit
	Interface Functions
	moreTransitData
	getNextTransitRouteData
	writeTransitRouteData
	getNextTransitScheduleData
	writeTransitScheduleData
	getNextTransitZoneData
	writeTransitZoneData

	Data Structures
	TransitStopData
	TransitRouteData
	TransitScheduleData
	TransitZoneData

	Network
	Interface Functions
	NetReadHeader
	NetWriteHeader
	NetSkipHeader
	NetReadActivityLocationHeader
	NetReadNode
	NetWriteNode
	NetReadLink
	NetWriteLink
	NetReadSpeed
	NetWriteSpeed
	NetReadPocket
	NetWritePocket
	NetReadLaneUse
	NetWriteLaneUse
	NetReadParking
	NetWriteParking
	NetReadBarrier
	NetWriteBarrier
	NetReadTransitStop
	NetWriteTransitStop
	NetReadLaneConnectivity
	NetWriteLaneConnectivity
	NetReadTurnProhibition
	NetWriteTurnProhibition
	NetReadUnsignalizedNode
	NetWriteUnsignalizedNode
	NetReadSignalizedNode
	NetWriteSignalizedNode
	NetReadPhasingPlan
	NetWritePhasingPlan
	NetReadTimingPlan
	NetWriteTimingPlan
	NetReadDetector
	NetWriteDetector
	NetReadSignalCoordinator
	NetWriteSignalCoordinator
	NetReadActivityLocation
	NetWriteActivityLocation
	NetReadProcessLink
	NetWriteProcessLink
	NetReadStudyAreaLink
	NetWriteStudyAreaLink

	Data Structures
	TNetHeader
	TNetNodeRecord
	TNetLinkRecord
	TNetSpeedRecord
	TNetPocketRecord
	TNetLaneUseRecord
	TNetParkingRecord
	TNetBarrierRecord
	TNetTransitStopRecord
	TNetLaneConnectivityRecord
	TNetTurnProhibitionRecord
	TNetUnsignalizedNodeRecord
	TNetSignalizedNodeRecord
	TNetPhasingPlanRecord
	TNetTimingPlanRecord
	TNetDetectorRecord
	TNetSignalCoordinatorRecord
	TNetActivityLocationRecord
	TNetProcessLinkRecord
	TNetStudyAreaLinkRecord

	Indexing
	Interface Functions
	BTree_Create
	BTree_Open
	BTree_Close
	BTree_CreateFromFile
	BTree_AddFileToIndex
	BTree_Insert
	BTree_AddFilename
	BTree_GetFilename
	BTree_GetFileNumber
	BTree_ClearFilename
	BTree_RenumberFiles
	BTree_GetDataPointer
	BTree_GetDataLine
	BTree_FindEntry
	BTree_Validate
	BTree_DeleteEntry
	BTreeIt_Create
	BTreeIt_Reset
	BTreeIt_Advance
	BTreeIt_MoreData
	BTreeIt_Get
	BTreeIt_Destroy
	BTreeIt_GetIterator
	BTreeIt_Compare_Equal

	Data Structures
	Key
	BTreeEntry
	BTreeNode
	BTree
	BtreeIt

	Utility Programs
	IndexFilenames
	IndexActivityFile, IndexPlanFile, IndexVehFile, IndexPopulationFile, IndexTravelTimeFile, IndexEventFile
	MergeIndices
	IndexDefrag

	Files
	Usage
	Examples

	Configuration
	Interface Functions
	ConfigRead
	ConfigWrite

	Data Structures
	TConfigRecord

	Utility Programs
	SetEnv

	Files
	Configuration File Keys
	Examples

	Logging
	Interface Functions
	cMessage

	Files
	Examples

